Exam 5: Applications of Derivatives

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Use differentiation to determine whether the integral formula is correct. - (2x2)4dx=(2x2)510+C\int ( 2 x - 2 ) ^ { 4 } d x = \frac { ( 2 x - 2 ) ^ { 5 } } { 10 } + C

(True/False)
4.9/5
(36)

Find an antiderivative of the given function. - cosπx+6sinx6\cos \pi x + 6 \sin \frac { x } { 6 }

(Multiple Choice)
4.7/5
(41)

Solve the problem. -The graphs below show the first and second derivatives of a function y=f(x)y = f ( x ) . Select a possible graph ff that passe through the point PP .  Solve the problem. -The graphs below show the first and second derivatives of a function  y = f ( x ) . Select a possible graph  f  that passe through the point  P .

(Multiple Choice)
4.9/5
(39)

Solve the problem. -Use Newton's method to find the value of xx for which ln(1/x)=1x2\ln ( 1 / x ) = 1 - x ^ { 2 } . Find the answer correct to five decimal places.

(Multiple Choice)
4.8/5
(39)

Use l'H^opital's rule to find the limit. - limθ 033cosθsin4θ\lim _ {\theta \rightarrow \ - 0 } \frac { 3 - 3 \cos \theta } { \sin 4 \theta }

(Multiple Choice)
4.8/5
(37)

Find the location of the indicated absolute extremum for the function. -Find the location of the indicated absolute extremum for the function. -

(Multiple Choice)
4.9/5
(35)

Find the location of the indicated absolute extremum for the function. -Find the location of the indicated absolute extremum for the function. -

(Multiple Choice)
4.7/5
(41)

Answer the question. -A marathoner ran the 26.2 mile New York City Marathon in 2.8 hrs. Did the runner ever exceed a speed of 9 miles per hour?

(Essay)
4.9/5
(42)

Solve the problem. -  Show that g(x)=a+xb2+(a+x)2 is an increasing function of x\text { Show that } g ( x ) = \frac { a + x } { \sqrt { b ^ { 2 } + ( a + x ) ^ { 2 } } } \text { is an increasing function of } x

(Essay)
4.8/5
(30)

Graph the rational function. -\9\begin{array} { c } y = \frac { x ^ { 2 } + x - 42 } { x ^ { 2 } - x - 56 } \\ \end{array}\) Graph the rational function. -\9\begin{array} { c }  y = \frac { x ^ { 2 } + x - 42 } { x ^ { 2 } - x - 56 } \\  \end{array}\)

(Multiple Choice)
4.8/5
(43)

Find an antiderivative of the given function. - x5+14xx ^ { - 5 } + \frac { 1 } { 4 \sqrt { x } }

(Multiple Choice)
5.0/5
(43)

Solve the problem. -At about what velocity do you enter the water if you jump from a 15 meter cliff? (Use g=9.8 m/sec2g = 9.8 \mathrm {~m} / \mathrm { sec } ^ { 2 } .)

(Multiple Choice)
4.9/5
(45)

Show that the function has exactly one zero in the given interval. - f(x)=x3+4x2+1,(,0)f ( x ) = x ^ { 3 } + \frac { 4 } { x ^ { 2 } } + 1 , ( - \infty , 0 )

(Essay)
4.8/5
(38)

Find a value of c that makes the function continuous at the given value of x. If it is impossible, state this. - f(x)={(sinx)x,x0c,x=0;x=0f ( x ) = \left\{ \begin{array} { c c } ( \sin x ) ^ { x } , & x \neq 0 \\c , & x = 0\end{array} ; \quad x = 0 \right.

(Multiple Choice)
4.9/5
(27)

Answer the problem. -Let f(x)=(x1)2/3f ( x ) = ( x - 1 ) ^ { 2 / 3 } (a) Does f(1)f ^ { \prime } ( 1 ) exist? (b) Show that the only local extreme value of ff occurs at x=1x = 1 . (c) Does the result of (b) contradict the Extreme Value Theorem? (d) Repeat parts (a) and (b) for f(x)=(xc)2/3f ( x ) = ( x - c ) ^ { 2 / 3 } . Give reasons for your answers.

(Essay)
4.8/5
(32)

Solve the problem. -Suppose Newton's Method is used with an initial guess x0x _ { 0 } that lies at a critical point (a,b),b0( a , b ) , b \neq 0 . What happens to x1x _ { 1 } and later approximations? Give reasons for your answer.

(Essay)
4.9/5
(30)

Solve the problem. -Write down the first four approximations to the solution of the equation sin3x=x\sin 3 x = x using Newton's method with an initial estimate of x0=1x _ { 0 } = 1 .

(Essay)
4.8/5
(31)

Find a value of c that makes the function continuous at the given value of x. If it is impossible, state this. - f(x)={4x2sin2x3x3,x0c,x=0;x=0f ( x ) = \left\{ \begin{array} { c l } \frac { 4 x - 2 \sin 2 x } { 3 x ^ { 3 } } , & x \neq 0 \\c , & x = 0\end{array} ; x = 0 \right.

(Multiple Choice)
4.8/5
(39)

Solve the initial value problem. - dydx=1x+5,y(4)=6\frac { d y } { d x } = \frac { 1 } { x + 5 } , y ( - 4 ) = 6

(Multiple Choice)
4.7/5
(39)

Solve the problem. -Given the velocity and initial position of a body moving along a coordinate line at time tt , find the body's position t\mathrm { t } v=16t+4,s(0)=7v = - 16 t + 4 , s ( 0 ) = 7

(Multiple Choice)
4.8/5
(38)
Showing 381 - 400 of 412
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)