Exam 5: Applications of Derivatives

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Use differentiation to determine whether the integral formula is correct. - 20(5x+5)3dx=(5x+5)4+C\int 20 ( 5 x + 5 ) ^ { 3 } d x = ( 5 x + 5 ) ^ { 4 } + C

(True/False)
4.9/5
(41)

Find the extreme values of the function and where they occur. - y=x2ex+2xexy = x ^ { 2 } e ^ { - x } + 2 x e ^ { - x }

(Multiple Choice)
4.8/5
(37)

Use differentiation to determine whether the integral formula is correct. - 4x(2x+7)3dx=12x2(2x+7)4+C\int 4 x ( 2 x + 7 ) ^ { 3 } d x = \frac { 1 } { 2 } x ^ { 2 } ( 2 x + 7 ) ^ { 4 } + C

(True/False)
4.9/5
(39)

Solve the problem. -Suppose that the second derivative of the function y = f(x) is y'' = (x - 3)(x + 9). For what x-values does the graph of f have an inflection point?

(Multiple Choice)
4.9/5
(37)

Answer each question appropriately. -The position of an object in free fall near the surface of the plane where the acceleration due to gravity has a constant magnitude of gg (length-units)/ sec2\mathrm { sec } ^ { 2 } is given by the equation: s=12gt2+v0t+s0\mathrm { s } = - \frac { 1 } { 2 } \mathrm { gt } ^ { 2 } + \mathrm { v } _ { 0 } \mathrm { t } + \mathrm { s } _ { 0 } , where s\mathrm { s } is the height above the earth, v0\mathrm { v } _ { 0 } is the initial velocity, and s0\mathrm { s } _ { 0 } is the initial height. Give the initial value problem for this situation. Solve it to check its validity. Remember the positive direction is the upward direction.

(Multiple Choice)
4.9/5
(42)

For the given expression y, find y'' and sketch the general shape of the graph of y = f(x). - y=x244y ^ { \prime } = \frac { x ^ { 2 } } { 4 } - 4  For the given expression y, find y'' and sketch the general shape of the graph of y = f(x). - y ^ { \prime } = \frac { x ^ { 2 } } { 4 } - 4

(Multiple Choice)
4.8/5
(28)

Solve the problem. -Given the acceleration, initial velocity, and initial position of a body moving along a coordinate line at time tt , finc body's position at time tt . a=9.8,v(0)=4, s(0)=13\mathrm { a } = 9.8 , \mathrm { v } ( 0 ) = 4 , \mathrm {~s} ( 0 ) = 13

(Multiple Choice)
4.9/5
(40)

Answer the problem. -Let f(x)=x39xf ( x ) = \left| x ^ { 3 } - 9 x \right| (a) Does f(0)f ^ { \prime } ( 0 ) exist? (b) Does f(3)\mathrm { f } ^ { \prime } ( 3 ) exist? (c) Does f(3)f ^ { \prime } ( - 3 ) exist? (d) Determine all extrema of ff .

(Essay)
5.0/5
(33)

Use l'Hopital's Rule to evaluate the limit. - limx0cos9x1x2\lim _ { x \rightarrow 0 } \frac { \cos 9 x - 1 } { x ^ { 2 } }

(Multiple Choice)
4.7/5
(26)

Solve the problem. -Find the graph that matches the given table. x (x) -1.5 0 2 7

(Multiple Choice)
4.9/5
(36)

Answer each question appropriately. -If differentiable functions y=F(x)y = \mathrm { F } ( \mathrm { x } ) and y=G(x)\mathrm { y } = \mathrm { G } ( \mathrm { x } ) both solve the initial value problem dydx=f(x),y(x0)=y0\frac { d y } { d x } = f ( x ) , \quad y \left( x _ { 0 } \right) = y _ { 0 } , on an interval I, must F(x)=G(x)F ( x ) = G ( x ) for every xx in I? Justify the answer.

(Multiple Choice)
4.7/5
(38)

Solve the problem. -The curve y=tanxy = \tan x crosses the line y=2xy = 2 x between x=0x = 0 and x=π2x = \frac { \pi } { 2 } . Use Newton's method to find where the line and the curve cross. (Round your answer to two decimal places.)

(Short Answer)
4.9/5
(42)
Showing 401 - 412 of 412
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)