Exam 5: Applications of Derivatives

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Solve the problem. -Use Newton's method to find the positive fourth root of 5 by solving the equation x45=0x ^ { 4 } - 5 = 0 . Start with x1=1x _ { 1 } = 1 and find x2x _ { 2 } .

(Essay)
4.9/5
(31)

Estimate the limit by graphing the function for an appropriate domain. Confirm your estimate by using L'Hopital's rule. Show each step of your calculation. -  If f(x)=(x3)2 and g(x)=1(x3)2, show that limx8f(x)g(x)=0\text { If } f ( x ) = ( x - 3 ) ^ { 2 } \text { and } g ( x ) = \frac { 1 } { ( x - 3 ) ^ { 2 } } \text {, show that } \lim _ { x \rightarrow 8 } f ( x ) g ( x ) = 0

(Essay)
4.7/5
(39)

Estimate the limit by graphing the function for an appropriate domain. Confirm your estimate by using L'Hopital's rule. Show each step of your calculation. -Given that x>0x > 0 , find the maximum value, if any, of x1/x6x ^ { 1 / x ^ { 6 } } .

(Multiple Choice)
4.9/5
(39)

Solve the problem. -A company is constructing an open-top, square-based, rectangular metal tank that will have a volume of 33ft333 \mathrm { ft } 3 . What dimensions yield the minimum surface area? Round to the nearest tenth, if necessary.

(Multiple Choice)
4.7/5
(37)

Identify the function's extreme values in the given domain, and say where they are assumed. Tell which of the extreme values, if any, are absolute. - f(x)=64x2,8x<8f ( x ) = \sqrt { 64 - x ^ { 2 } } , - 8 \leq x < 8

(Multiple Choice)
4.7/5
(29)

Find the value or values of cc that satisfy the equation f(b)f(a)ba=f(c)\frac { f ( b ) - f ( a ) } { b - a } = f ^ { \prime } ( c ) in the conclusion of the Mean Value Theorem for the function and interval. - f(x)=x2+3x+1,[1,2]f ( x ) = x ^ { 2 } + 3 x + 1 , [ - 1,2 ]

(Multiple Choice)
4.8/5
(36)

Find the most general antiderivative. - (y8+8y)dy\int \left( \frac { \sqrt { y } } { 8 } + \frac { 8 } { \sqrt { y } } \right) d y

(Multiple Choice)
4.9/5
(29)

Use l'H^opital's rule to find the limit. - limx0sin4xtan3x\lim _ { x \rightarrow 0 } \frac { \sin 4 x } { \tan 3 x }

(Multiple Choice)
4.8/5
(35)

Solve the problem. -  How many solutions does the equation cos4x=0.95x2 have? \text { How many solutions does the equation } \cos 4 x = 0.95 - x ^ { 2 } \text { have? }

(Short Answer)
4.8/5
(42)

Find all possible functions with the given derivative. - y=3t4ty ^ { \prime } = 3 t - \frac { 4 } { \sqrt { t } }

(Multiple Choice)
4.9/5
(39)

Solve the problem. -The stiffness of a rectangular beam is proportional to its width times the cube of its depth. Find the dimensions of the stiffest beam than can be cut from a 13-in.-diameter cylindrical log. (Round answers to the nearest tenth.) Solve the problem. -The stiffness of a rectangular beam is proportional to its width times the cube of its depth. Find the dimensions of the stiffest beam than can be cut from a 13-in.-diameter cylindrical log. (Round answers to the nearest tenth.)

(Multiple Choice)
4.9/5
(31)

Find the limit. - limx0+x8lnx\lim _ { x \rightarrow 0 ^ { + } } x ^ { 8 } \ln x

(Multiple Choice)
4.8/5
(37)

Solve the problem. -Use Newton's method to find the value of xx for which ex=x22x+5e ^ { - x } = x ^ { 2 } - 2 x + 5 . Find the answer correct to five decimal places.

(Multiple Choice)
4.9/5
(33)

L'Hopital's rule does not help with the given limit. Find the limit some other way. - limx0secxcscx\lim _ { x \rightarrow 0 } \frac { \sec x } { \csc x }

(Multiple Choice)
4.8/5
(42)

Use the maximum/minimum finder on a graphing calculator to determine the approximate location of all local extrema. - f(x)=x43x321x2+74x+30f ( x ) = x ^ { 4 } - 3 x ^ { 3 } - 21 x ^ { 2 } + 74 x + 30

(Multiple Choice)
4.7/5
(42)

Find an antiderivative of the given function. - 45csc2x5\frac { 4 } { 5 } \csc ^ { 2 } \frac { x } { 5 }

(Multiple Choice)
4.8/5
(37)

Provide an appropriate response. -  Find the absolute maximum and minimum values of f(x)=2xex on [0,1]\text { Find the absolute maximum and minimum values of } f ( x ) = 2 x - e ^ { x } \text { on } [ 0,1 ] \text {. }

(Multiple Choice)
4.8/5
(46)

Find the absolute extreme values of the function on the interval. - F(x)=x3,3x8F ( x ) = \sqrt [ 3 ] { x } , - 3 \leq x \leq 8

(Multiple Choice)
4.9/5
(34)

Sketch the graph of the function and determine whether it has any absolute extreme values on its domain. -Sketch the graph of the function and determine whether it has any absolute extreme values on its domain. -

(Multiple Choice)
4.9/5
(35)

Solve the initial value problem. - dvdt=14csctcott,v(3π2)=34\frac { \mathrm { dv } } { \mathrm { dt } } = \frac { 1 } { 4 } \csc t \cot t , v \left( \frac { 3 \pi } { 2 } \right) = \frac { 3 } { 4 }

(Multiple Choice)
4.9/5
(39)
Showing 141 - 160 of 412
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)