Exam 5: Applications of Derivatives

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Use l'Hopital's Rule to evaluate the limit. - limx8+2x4x2176x17x2\lim _ { x \rightarrow \infty } \frac { 8 + 2 x - 4 x ^ { 2 } } { 17 - 6 x - 17 x ^ { 2 } }

(Multiple Choice)
4.7/5
(24)

Use l'H^opital's rule to find the limit. - limxxsin16x\lim _{ x \rightarrow \infty } x \sin \frac { 16 } { x }

(Multiple Choice)
4.8/5
(38)

Solve the problem. -Suppose that c(x)=3x326x2+7664xc ( x ) = 3 x ^ { 3 } - 26 x ^ { 2 } + 7664 x is the cost of manufacturing xx items. Find a production level that will minimize the average cost of making xx items.

(Multiple Choice)
4.9/5
(36)

Solve the problem. -Given the acceleration, initial velocity, and initial position of a body moving along a coordinate line at time t, find the body's position at time t. A = 16 cos 4t, v(0) = 8, s(0) = 3

(Multiple Choice)
4.8/5
(39)

Find the absolute extreme values of the function on the interval. - g(x)=x2+7x12,4x3g ( x ) = - x ^ { 2 } + 7 x - 12,4 \leq x \leq 3

(Multiple Choice)
4.8/5
(38)

Find an antiderivative of the given function. - 27x26x327 x ^ { 2 } - 6 x - 3

(Multiple Choice)
4.9/5
(47)

Solve the problem. -The strength S\mathrm { S } of a rectangular wooden beam is proportional to its width times the square of its depth. Find the dimensions of the strongest beam that can be cut from a 10 -in.-diameter cylindrical log. (Round answers to the nearest tenth.)  Solve the problem. -The strength  \mathrm { S }  of a rectangular wooden beam is proportional to its width times the square of its depth. Find the dimensions of the strongest beam that can be cut from a 10 -in.-diameter cylindrical log. (Round answers to the nearest tenth.)

(Multiple Choice)
4.7/5
(35)

Use the maximum/minimum finder on a graphing calculator to determine the approximate location of all local extrema. - f(x)=0.01x5x4+x3+8x27x+81f ( x ) = 0.01 x ^ { 5 } - x ^ { 4 } + x ^ { 3 } + 8 x ^ { 2 } - 7 x + 81

(Multiple Choice)
4.8/5
(31)

Use Newton's method to estimate the requested solution of the equation. Start with given value of x0 and then give x2 as the estimated solution. - x46x+3=0;x0=2; Find the right-hand solution. x ^ { 4 } - 6 x + 3 = 0 ; x _ { 0 } = 2 ; \text { Find the right-hand solution. }

(Multiple Choice)
4.8/5
(36)

The graph below shows solution curves of a differential equation. Find an equation for the curve through the given point. - The graph below shows solution curves of a differential equation. Find an equation for the curve through the given point. -   \frac { d y } { d x } = 1 - \frac { 6 } { 5 } x ^ { 1 / 5 } dydx=165x1/5\frac { d y } { d x } = 1 - \frac { 6 } { 5 } x ^ { 1 / 5 }

(Multiple Choice)
5.0/5
(33)

Solve the initial value problem. - d2rdt2=4t3;drdtt=1=2,r(1)=5\frac { \mathrm { d } ^ { 2 } \mathrm { r } } { \mathrm { dt } ^ { 2 } } = \frac { 4 } { \mathrm { t } ^ { 3 } } ; \left. \frac { \mathrm { dr } } { \mathrm { dt } } \right| _ { \mathrm { t } = 1 } = 2 , \quad \mathrm { r } ( 1 ) = 5

(Multiple Choice)
4.8/5
(39)

Find the limit. - limx(1+2x4)x\lim _ { x \rightarrow \infty } \left( 1 + \frac { 2 } { x ^ { 4 } } \right) ^ { x }

(Multiple Choice)
4.9/5
(45)

Find the most general antiderivative. - (tt6)dt\int ( \sqrt { t } - \sqrt [ 6 ] { t } ) d t

(Multiple Choice)
4.7/5
(31)

Find the absolute extreme values of the function on the interval. - f(x)=tanx,π6xπ6f ( x ) = \tan x , - \frac { \pi } { 6 } \leq x \leq \frac { \pi } { 6 }

(Multiple Choice)
4.9/5
(36)

Find the function with the given derivative whose graph passes through the point P. - g(x)=4x2+6x,P(4,5)g ^ { \prime } ( x ) = \frac { 4 } { x ^ { 2 } } + 6 x , P ( - 4,5 )

(Multiple Choice)
4.8/5
(36)

Find the absolute extreme values of the function on the interval. - f(x)=x5,4x9f ( x ) = | x - 5 | , 4 \leq x \leq 9

(Multiple Choice)
4.8/5
(35)

Find the function with the given derivative whose graph passes through the point P. - r(θ)=5csc2θ,P(π4,0)\mathrm { r } ^ { \prime } ( \theta ) = 5 - \csc ^ { 2 } \theta , \mathrm { P } \left( \frac { \pi } { 4 } , 0 \right)

(Multiple Choice)
4.8/5
(38)

Find the most general antiderivative. - (1x3x312)dx\int \left( \frac { 1 } { x ^ { 3 } } - x ^ { 3 } - \frac { 1 } { 2 } \right) d x

(Multiple Choice)
4.8/5
(35)

Solve the problem. -Suppose c(x)=x322x2+20,000xc ( x ) = x ^ { 3 } - 22 x ^ { 2 } + 20,000 x is the cost of manufacturing xx items. Find a production level that will minimize the average cost of making xx items.

(Multiple Choice)
4.8/5
(40)

Use the maximum/minimum finder on a graphing calculator to determine the approximate location of all local extrema. - f(x)=x44x353x286x49f ( x ) = x ^ { 4 } - 4 x ^ { 3 } - 53 x ^ { 2 } - 86 x - 49

(Multiple Choice)
4.8/5
(45)
Showing 161 - 180 of 412
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)