Exam 5: Applications of Derivatives

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Sketch the graph and show all local extrema and inflection points. -Sketch the graph and show all local extrema and inflection points. -

(Multiple Choice)
4.8/5
(39)

Estimate the limit by graphing the function for an appropriate domain. Confirm your estimate by using L'Hopital's rule. Show each step of your calculation. - limx0cosx1exx1\lim _ { x \rightarrow 0 } \frac { \cos x - 1 } { e ^ { x } - x - 1 }

(Essay)
4.9/5
(40)

Sketch the graph of the function and determine whether it has any absolute extreme values on its domain. -Sketch the graph of the function and determine whether it has any absolute extreme values on its domain. -

(Multiple Choice)
4.8/5
(27)

For the given expression y, find y'' and sketch the general shape of the graph of y = f(x). -For the given expression y, find y'' and sketch the general shape of the graph of y = f(x). -

(Multiple Choice)
4.8/5
(39)

Find an antiderivative of the given function. - x2+5xx \sqrt { 2 } + 5 ^ { - x }

(Multiple Choice)
4.9/5
(35)

Solve the problem. -A rocket lifts off the surface of Earth with a constant acceleration of 30 m/sec230 \mathrm {~m} / \mathrm { sec } ^ { 2 } . How fast will the rocket be going 2.52.5 minutes later?

(Multiple Choice)
4.9/5
(31)

Use the maximum/minimum finder on a graphing calculator to determine the approximate location of all local extrema. - f(x)=x515x43x3172x2+135x+0.033f ( x ) = x ^ { 5 } - 15 x ^ { 4 } - 3 x ^ { 3 } - 172 x ^ { 2 } + 135 x + 0.033

(Multiple Choice)
4.9/5
(28)

Use the graph of the function f(x) to locate the local extrema and identify the intervals where the function is concave up and concave down. -Use the graph of the function f(x) to locate the local extrema and identify the intervals where the function is concave up and concave down. -

(Multiple Choice)
5.0/5
(40)

Find the limit. - limx(lnx)2/x\lim _ { x \rightarrow\infty } ( \ln x ) ^ { 2 / x }

(Multiple Choice)
4.8/5
(37)

Solve the problem. -The graphs below show the first and second derivatives of a function y=f(x)y = f ( x ) . Select a possible graph ff that passe through the point PP .  Solve the problem. -The graphs below show the first and second derivatives of a function  y = f ( x ) . Select a possible graph  f  that passe through the point  P .

(Multiple Choice)
4.8/5
(39)

Find the absolute extreme values of the function on the interval. - f(x)=4ex2,<x<f ( x ) = - 4 e ^ { - x ^ { 2 } } , - \infty < x < \infty

(Multiple Choice)
4.8/5
(33)

Find the extrema of the function on the given interval, and say where they occur. - csc2x+2cotx,0<x<π\csc ^ { 2 } x + 2 \cot x , 0 < x < \pi

(Multiple Choice)
4.7/5
(43)

Solve the problem. -Given the velocity and initial position of a body moving along a coordinate line at time tt , find the body's positios t\mathrm { t } . v=8πsin4tπ,s(π2)=2v = \frac { 8 } { \pi } \sin \frac { 4 t } { \pi } , s \left( \pi ^ { 2 } \right) = 2

(Multiple Choice)
4.7/5
(39)

Find the absolute extreme values of the function on the interval. - f(x)=exx,4x2f ( x ) = e ^ { x } - x , - 4 \leq x \leq 2

(Multiple Choice)
4.8/5
(42)

Find the limit. - limx0(e6/x+5x)x/2\lim _ { x \rightarrow 0 } \left( e ^ { 6 / x } + 5 x \right) ^ { x / 2 }

(Multiple Choice)
4.9/5
(38)

Find all possible functions with the given derivative. - r=4+1θ4\mathbf { r } ^ { \prime } = 4 + \frac { 1 } { \theta ^ { 4 } }

(Multiple Choice)
4.9/5
(39)

Use Newton's method to estimate the requested solution of the equation. Start with given value of x0 and then give x2 as the estimated solution. - x3+5x+2=0;x0=1; Find the one real solution. x ^ { 3 } + 5 x + 2 = 0 ; x _ { 0 } = - 1 ; \text { Find the one real solution. }

(Multiple Choice)
4.9/5
(43)

Find the extreme values of the function and where they occur. - y=9xx2+1y = \frac { 9 x } { x ^ { 2 } + 1 }

(Multiple Choice)
4.8/5
(29)

Find the value or values of cc that satisfy the equation f(b)f(a)ba=f(c)\frac { f ( b ) - f ( a ) } { b - a } = f ^ { \prime } ( c ) in the conclusion of the Mean Value Theorem for the function and interval. - f(x)=x+12x,[3,4]f ( x ) = x + \frac { 12 } { x } , [ 3,4 ]

(Multiple Choice)
4.9/5
(36)

Find the largest open interval where the function is changing as requested. -Decreasing y=1x2+7\quad \mathrm { y } = \frac { 1 } { \mathrm { x } ^ { 2 } } + 7

(Multiple Choice)
4.9/5
(39)
Showing 61 - 80 of 412
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)