Exam 5: Applications of Derivatives

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Identify the function's extreme values in the given domain, and say where they are assumed. Tell which of the extreme values, if any, are absolute. - g(t)=t33112t2+24t,0t<g ( t ) = \frac { t ^ { 3 } } { 3 } - \frac { 11 } { 2 } t ^ { 2 } + 24 t , 0 \leq t < \infty

(Multiple Choice)
4.8/5
(40)

Find the largest open interval where the function is changing as requested. -Increasing y = 7x - 5

(Multiple Choice)
4.9/5
(41)

Solve the problem. -Use Newton's method to estimate the solutions of the equation 4x22x+1=0- 4 \mathrm { x } ^ { 2 } - 2 \mathrm { x } + 1 = 0 . Start with x1=0.5\mathrm { x } _ { 1 } = 0.5 for the right-hand solution and with x0=2\mathrm { x } _ { 0 } = - 2 for the solution on the left. Then, in each case find x2\mathrm { x } _ { 2 } .

(Essay)
5.0/5
(45)

Identify the function's extreme values in the given domain, and say where they are assumed. Tell which of the extreme values, if any, are absolute. - f(x)=(x+7)2,<x0f ( x ) = ( x + 7 ) ^ { 2 } , \Leftrightarrow < x \leq 0

(Multiple Choice)
4.9/5
(34)

Determine from the graph whether the function has any absolute extreme values on the interval [a, b]. -Determine from the graph whether the function has any absolute extreme values on the interval [a, b]. -

(Multiple Choice)
4.9/5
(34)

Solve the problem. -The graphs below show the first and second derivatives of a function y=f(x)y = f ( x ) . Select a possible graph ff that passe through the point PP .  Solve the problem. -The graphs below show the first and second derivatives of a function  y = f ( x ) . Select a possible graph  f  that passe through the point  P .

(Multiple Choice)
4.9/5
(44)

Solve the problem. -From a thin piece of cardboard 50 in. by 50in50 \mathrm { in } ., square corners are cut out so that the sides can be folded up to make a box. What dimensions will yield a box of maximum volume? What is the maximum volume? Round to the nearest tenth, if necessary.

(Multiple Choice)
4.9/5
(45)

Find the extreme values of the function and where they occur. - y=1x21y = \frac { 1 } { x ^ { 2 } - 1 }

(Multiple Choice)
4.8/5
(34)

Find the most general antiderivative. - secθsecθcosθdθ\int \frac { \sec \theta } { \sec \theta - \cos \theta } d \theta

(Multiple Choice)
4.7/5
(39)

Graph the rational function. - y=x3x225y=\frac{x^{3}}{x^{2}-25}  Graph the rational function. - y=\frac{x^{3}}{x^{2}-25}

(Multiple Choice)
4.8/5
(39)

Find the largest open interval where the function is changing as requested. -Decreasing f(x)=x+3f ( x ) = - \sqrt { x + 3 }

(Multiple Choice)
4.9/5
(30)

Find the function with the given derivative whose graph passes through the point P. - f(x)=e3x,P(0,73)f ^ { \prime } ( x ) = e ^ { 3 x } , P \left( 0 , \frac { 7 } { 3 } \right)

(Multiple Choice)
4.8/5
(40)

Solve the problem. -If the price charged for a candy bar is p(x)\mathrm { p } ( \mathrm { x } ) cents, then x\mathrm { x } thousand candy bars will be sold in a certain city, where p(x)=24x22\mathrm { p } ( \mathrm { x } ) = 24 - \frac { \mathrm { x } } { 22 } . How many candy bars must be sold to maximize revenue?

(Multiple Choice)
4.9/5
(32)

Graph the rational function. - y=3x2y = \frac { 3 } { x ^ { 2 } }  Graph the rational function. - y = \frac { 3 } { x ^ { 2 } }

(Multiple Choice)
4.8/5
(40)

Use l'Hopital's Rule to evaluate the limit. - limx4x216x4\lim _ { x \rightarrow 4 } \frac { x ^ { 2 } - 16 } { x - 4 }

(Multiple Choice)
4.9/5
(35)

Find the value or values of cc that satisfy the equation f(b)f(a)ba=f(c)\frac { f ( b ) - f ( a ) } { b - a } = f ^ { \prime } ( c ) in the conclusion of the Mean Value Theorem for the function and interval. - f(x)=tan1x,[33,33]f ( x ) = \tan ^ { - 1 } x , \left[ - \frac { \sqrt { 3 } } { 3 } , \frac { \sqrt { 3 } } { 3 } \right] \quad Round to the nearest thousandth.

(Multiple Choice)
4.9/5
(31)

Use a computer algebra system (CAS) to solve the given initial value problem. - y=10x2sinx,y(0)=1y ^ { \prime } = 10 x ^ { 2 } \sin x , y ( 0 ) = 1

(Multiple Choice)
4.9/5
(35)

Answer the problem. -Consider the quartic function f(x)=ax4+bx3+cx2+dx+e,a0f ( x ) = a x ^ { 4 } + b x ^ { 3 } + c x ^ { 2 } + d x + e , a \neq 0 . Must this function have at least one critical point? Give reasons for your answer. (Hint: Must f(x)=0f ^ { \prime } ( x ) = 0 for some xx ?) How many local extreme values can ff have?

(Essay)
4.7/5
(40)

Solve the problem. -How close does the curve y=xy = \sqrt { x } come to the point (3,0)( 3,0 ) ? (Hint: If you minimize the square of the distance, you can avoid square roots.)

(Multiple Choice)
4.9/5
(33)

For the given expression y, find y'' and sketch the general shape of the graph of y = f(x). - y=4x={4x,x04x,x>0y ^ { \prime } = 4 | x | = \left\{ \begin{array} { c c } - 4 x , & x \leq 0 \\4 x , & x > 0\end{array} \right.  For the given expression y, find y'' and sketch the general shape of the graph of y = f(x). - y ^ { \prime } = 4 | x | = \left\{ \begin{array} { c c }  - 4 x , & x \leq 0 \\ 4 x , & x > 0 \end{array} \right.

(Multiple Choice)
4.9/5
(37)
Showing 101 - 120 of 412
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)