Exam 5: Applications of Derivatives

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Graph the equation. Include the coordinates of any local and absolute extreme points and inflection points. - y=x2x2+13y = \frac { x ^ { 2 } } { x ^ { 2 } + 13 }  Graph the equation. Include the coordinates of any local and absolute extreme points and inflection points. - y = \frac { x ^ { 2 } } { x ^ { 2 } + 13 }

(Multiple Choice)
4.9/5
(35)

Use l'Hopital's Rule to evaluate the limit. - limx2x27x+10x2\lim _ { x \rightarrow 2 } \frac { x ^ { 2 } - 7 x + 10 } { x - 2 }

(Multiple Choice)
4.8/5
(45)

Solve the problem. -The graph below shows the position s=f(t)s = f ( t ) of a body moving back and forth on a coordinate line. (a) When is the body moving away from the origin? Toward the origin? At approximately what times is the (b) velocity equal to zero? (c) Acceleration equal to zero? (d) When is the acceleration positive? Negative?  Solve the problem. -The graph below shows the position  s = f ( t )  of a body moving back and forth on a coordinate line. (a) When is the body moving away from the origin? Toward the origin? At approximately what times is the (b) velocity equal to zero? (c) Acceleration equal to zero? (d) When is the acceleration positive? Negative?    8.5 8.5

(Essay)
4.9/5
(40)

Graph the equation. Include the coordinates of any local and absolute extreme points and inflection points. - y=x+cos2x,0xπy=x+\cos 2 x, 0 \leq x \leq \pi  Graph the equation. Include the coordinates of any local and absolute extreme points and inflection points. - y=x+\cos 2 x, 0 \leq x \leq \pi

(Multiple Choice)
4.9/5
(36)

Graph the equation. Include the coordinates of any local and absolute extreme points and inflection points. - y=x7x2y = x \sqrt { 7 - x ^ { 2 } }  Graph the equation. Include the coordinates of any local and absolute extreme points and inflection points. - y = x \sqrt { 7 - x ^ { 2 } }

(Multiple Choice)
4.9/5
(33)

Estimate the limit by graphing the function for an appropriate domain. Confirm your estimate by using L'Hopital's rule. Show each step of your calculation. - limxx1/x\lim _{ x \rightarrow \infty } \sqrt { x } ^ { 1 / x }

(Essay)
4.8/5
(40)

Find the most general antiderivative. - (7e2x6ex)dx\int \left( 7 e ^ { 2 x } - 6 e ^ { - x } \right) d x

(Multiple Choice)
4.7/5
(40)

Determine from the graph whether the function has any absolute extreme values on the interval [a, b]. -Determine from the graph whether the function has any absolute extreme values on the interval [a, b]. -

(Multiple Choice)
4.9/5
(27)

Sketch the graph and show all local extrema and inflection points. - =x(x25)4= x \left( \frac { x } { 2 } - 5 \right) ^ { 4 }  Sketch the graph and show all local extrema and inflection points. - = x \left( \frac { x } { 2 } - 5 \right) ^ { 4 }

(Multiple Choice)
4.8/5
(44)

Use differentiation to determine whether the integral formula is correct. - (5x+7)4dx=(5x+7)525+C\int ( 5 x + 7 ) ^ { 4 } d x = \frac { ( 5 x + 7 ) ^ { 5 } } { 25 } + C

(True/False)
4.8/5
(41)

Solve the initial value problem. - drdθ=π2cosπ2θ,r(0)=10\frac { d r } { d \theta } = - \frac { \pi } { 2 } \cos \frac { \pi } { 2 } \theta , r ( 0 ) = - 10

(Multiple Choice)
4.9/5
(35)

Find the absolute extreme values of the function on the interval. - F(x)=2x2,0.5x5F ( x ) = - \frac { 2 } { x ^ { 2 } } , 0.5 \leq x \leq 5

(Multiple Choice)
4.8/5
(32)

Find the function with the given derivative whose graph passes through the point P. - g(x)=1x2+2x,P(2,2)g ^ { \prime } ( x ) = \frac { 1 } { x ^ { 2 } } + 2 x , P ( - 2,2 )

(Multiple Choice)
4.7/5
(30)

Using the derivative of f(x) given below, determine the intervals on which f(x) is increasing or decreasing. - f(x)=(1x)(9x)f ^ { \prime } ( x ) = ( 1 - x ) ( 9 - x )

(Multiple Choice)
4.9/5
(31)

L'Hopital's rule does not help with the given limit. Find the limit some other way. - limxθ+1cotxsinx\lim _ { x \rightarrow \theta ^ { + } } \frac { 1 } { \cot x \sin x }

(Multiple Choice)
4.8/5
(29)

Find the derivative at each critical point and determine the local extreme values. - y={72x,x1x+4,x>1y = \left\{ \begin{array} { l } 7 - 2 x , x \leq 1 \\x + 4 , x > 1\end{array} \right.

(Multiple Choice)
4.8/5
(33)

Solve the problem. -A small frictionless cart, attached to the wall by a spring, is pulled 10 cm10 \mathrm {~cm} back from its rest position and released at time t=0t = 0 to roll back and forth for 4sec4 \mathrm { sec } . Its position at time tt is s=110cosπt\mathrm { s } = 1 - 10 \cos \pi \mathrm { t } . What is the cart's maximum speed? When is the cart moving that fast? What is the magnitude of of the acceleration then?

(Multiple Choice)
5.0/5
(43)

Estimate the limit by graphing the function for an appropriate domain. Confirm your estimate by using L'Hopital's rule. Show each step of your calculation. - limx01sinx1x\lim _ { x \rightarrow 0 } \frac { 1 } { \sin x } - \frac { 1 } { \sqrt { x } }

(Essay)
4.9/5
(48)

Graph the rational function. - =  Graph the rational function. - \begin{aligned} \mathrm { y } = \frac { \mathrm { x } } { \mathrm { x } ^ { 2 } - 1 } \\ \end{aligned}

(Multiple Choice)
4.9/5
(40)

Solve the initial value problem. - drdt=6t+sec2t,r(π)=5\frac { \mathrm { dr } } { \mathrm { dt } } = 6 \mathrm { t } + \sec ^ { 2 } \mathrm { t } , \mathrm { r } ( - \pi ) = 5

(Multiple Choice)
4.9/5
(34)
Showing 301 - 320 of 412
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)