Exam 5: Applications of Derivatives

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

For the given expression y, find y'' and sketch the general shape of the graph of y = f(x). - =  For the given expression y, find y'' and sketch the general shape of the graph of y = f(x). - \begin{array} { l }  \mathrm { y } ^ { \prime } = \mathrm { x } ^ { - 2 / 3 } \\ \\ \end{array}

(Multiple Choice)
4.8/5
(39)

Use the graph of the function f(x) to locate the local extrema and identify the intervals where the function is concave up and concave down. -Use the graph of the function f(x) to locate the local extrema and identify the intervals where the function is concave up and concave down. -

(Multiple Choice)
4.9/5
(44)

Solve the problem. -You are planning to close off a corner of the first quadrant with a line segment 17 units long running from ( x,0x , 0 ) to (0,y)( 0 , y ) . Show that the area of the triangle enclosed by the segment is largest when x=yx = y .  Solve the problem. -You are planning to close off a corner of the first quadrant with a line segment 17 units long running from (  x , 0  ) to  ( 0 , y ) . Show that the area of the triangle enclosed by the segment is largest when  x = y .

(Essay)
4.8/5
(38)

Solve the problem. -Find the number of units that must be produced and sold in order to yield the maximum profit, given the follow equations for revenue and cost: R(x)=30x-0.5 C(x)=2x+8

(Multiple Choice)
4.8/5
(36)

Solve the problem. -The acceleration of gravity near the surface of Mars is 3.72 m/sec23.72 \mathrm {~m} / \mathrm { sec } ^ { 2 } . If a rock is blasted straight up from the surface with an initial velocity of 85 m/sec85 \mathrm {~m} / \mathrm { sec } (about 190mph190 \mathrm { mph } ), how high does it go? (Hint: When is velocity zero?)

(Multiple Choice)
4.8/5
(49)

Solve the problem. -Use Newton's method to estimate the solutions of the equation 3x2+2x5=03 x ^ { 2 } + 2 x - 5 = 0 . Start with x1=0.5x _ { 1 } = 0.5 for the right-hand solution and with x0=2x _ { 0 } = - 2 for the solution on the left. Then, in each case find x2x _ { 2 } .

(Essay)
5.0/5
(41)

Use the maximum/minimum finder on a graphing calculator to determine the approximate location of all local extrema. - f(x)=0.1x4x315x2+59x+7f ( x ) = 0.1 x ^ { 4 } - x ^ { 3 } - 15 x ^ { 2 } + 59 x + 7

(Multiple Choice)
4.7/5
(39)

Determine all critical points for the function. - f(x)=x2+12x+36f ( x ) = x ^ { 2 } + 12 x + 36

(Multiple Choice)
4.7/5
(42)

Determine whether the function satisfies the hypotheses of the Mean Value Theorem for the given interval. - f(x)=x1/3f ( x ) = x ^ { 1 / 3 }

(True/False)
4.8/5
(34)

Solve the problem. -Determine the dimensions of the rectangle of largest area that can be inscribed in a semicircle of radius 3.3 .

(Multiple Choice)
4.7/5
(36)

Identify the function's local and absolute extreme values, if any, saying where they occur. - g(x)=x4443x392x2+36x4g ( x ) = \frac { x ^ { 4 } } { 4 } - \frac { 4 } { 3 } x ^ { 3 } - \frac { 9 } { 2 } x ^ { 2 } + 36 x - 4

(Multiple Choice)
4.9/5
(41)

Identify the function's local and absolute extreme values, if any, saying where they occur. - f(x)=x3+1.5x2+36x+2f ( x ) = - x ^ { 3 } + 1.5 x ^ { 2 } + 36 x + 2

(Multiple Choice)
4.7/5
(40)

Use l'H^opital's rule to find the limit. - limxθsin9x5x\lim _ { x \rightarrow \theta } \frac { \sin 9 x } { 5 x }

(Multiple Choice)
4.7/5
(31)

Identify the function's extreme values in the given domain, and say where they are assumed. Tell which of the extreme values, if any, are absolute. - h(x)=x3+3x2+8x+2,<x0h ( x ) = x ^ { 3 } + 3 x ^ { 2 } + 8 x + 2 , \Leftrightarrow < x \leq 0

(Multiple Choice)
4.8/5
(28)

Solve the problem. -  Use Newton’s method to estimate the one real solution of 2x33x5=0. Start with x1=1 and then find x2\text { Use Newton's method to estimate the one real solution of } 2 x ^ { 3 } - 3 x - 5 = 0 \text {. Start with } x _ { 1 } = 1 \text { and then find } x _ { 2 }

(Essay)
4.8/5
(39)

Find the derivative at each critical point and determine the local extreme values. - y={14x212x+154,x1x36x2+8x,x>1y = \left\{ \begin{array} { l l } - \frac { 1 } { 4 } x ^ { 2 } - \frac { 1 } { 2 } x + \frac { 15 } { 4 } , & x \leq 1 \\x ^ { 3 } - 6 x ^ { 2 } + 8 x , & x > 1\end{array} \right.

(Multiple Choice)
4.8/5
(34)

Solve the problem. -  The function y=cotx233cscx has an absolute maximum value on the interval 0<x<π. Find it. \text { The function } y = \cot x - \frac { 2 \sqrt { 3 } } { 3 } \csc x \text { has an absolute maximum value on the interval } 0 < x < \pi \text {. Find it. }

(Essay)
4.8/5
(40)

Solve the problem. -On our moon, the acceleration of gravity is 1.6 m/sec21.6 \mathrm {~m} / \mathrm { sec } ^ { 2 } . If a rock is dropped into a crevasse, how fast will it be going just before it hits bottom 45 seconds later?

(Multiple Choice)
4.9/5
(25)

Find the absolute extreme values of the function on the interval. - f(x)=ln(x),9x1f ( x ) = \ln ( - x ) , - 9 \leq x \leq - 1

(Multiple Choice)
4.8/5
(42)

Estimate the limit by graphing the function for an appropriate domain. Confirm your estimate by using L'Hopital's rule. Show each step of your calculation. -Which one is correct, and which one is wrong? Give reasons for your answers. (a) limx2x+2x24=limx212x=14\lim _ { x \rightarrow 2 } \frac { x + 2 } { x ^ { 2 } - 4 } = \lim _ { x \rightarrow 2 } \frac { 1 } { 2 x } = - \frac { 1 } { 4 } (b) limx2x+2x24=08=0\lim _ { x \rightarrow 2 } \frac { x + 2 } { x ^ { 2 } - 4 } = \frac { 0 } { - 8 } = 0

(Essay)
4.8/5
(31)
Showing 321 - 340 of 412
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)