Exam 8: Infinite Sequences and Series

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Consider the sequence defined by an=(32)na _ { n } = \left( \frac { 3 } { 2 } \right) ^ { n } . (n starts at 1) (a) Write the first five terms of the sequence.(b) Determine the limit of the sequence.(c) Let bn=an+1anb _ { n } = \frac { a _ { n + 1 } } { a _ { n } } . Write the first five terms of this sequence.(d) Determine the limit of bnb _ { n } .

(Essay)
4.7/5
(36)

Construct an example of power series that has [3,5)[ 3,5 ) as its interval of convergence.

(Essay)
4.8/5
(39)

Find the sum of the series n=4ln(n+1n)\sum _ { n = 4 } ^ { \infty } \ln \left( \frac { n + 1 } { n } \right) .

(Multiple Choice)
4.8/5
(41)

What is the value of p that marks the boundary between convergence and divergence of the series n=21n(lnn)y\sum _ { n = 2 } ^ { \infty } \frac { 1 } { n ( \ln n ) ^ { y } } ?

(Multiple Choice)
4.9/5
(37)

Which of the following three tests will establish that the series n=1n7n3+46\sum _ { n = 1 } ^ { \infty } \frac { n } { \sqrt { 7 n ^ { 3 } + 46 } } diverges? 1) Limit Comparison Test with n=1n1\sum _ { n = 1 } ^ { \infty } n ^ { - 1 } 2) Comparison Test with n=1n1\sum _ { n = 1 } ^ { \infty } n ^ { - 1 } 3) Comparison Test with n=1n1/2\sum _ { n = 1 } ^ { \infty } n ^ { - 1 / 2 }

(Multiple Choice)
4.8/5
(51)

Find the interval of convergence for n=1xnn2n\sum _ { n = 1 } ^ { \infty } \frac { x ^ { n } } { n 2 ^ { n } } .

(Essay)
4.9/5
(39)

Express the number 0.3070 . \overline { 307 } as a ratio of integers.

(Short Answer)
4.9/5
(30)

Which of the following series diverges? 1) n=1n+2n2+1\sum _ { n = 1 } ^ { \infty } \frac { n + 2 } { n ^ { 2 } + 1 } 2) n=1n!2n\sum _ { n = 1 } ^ { \infty } \frac { n ! } { 2 ^ { n } } 3) n=1(2n1n+3)n\sum _ { n = 1 } ^ { \infty } \left( \frac { 2 n - 1 } { n + 3 } \right) ^ { n }

(Multiple Choice)
4.9/5
(33)

Which of the three series below converges? 1) n=0(34)n\sum _ { n = 0 } ^ { \infty } \left( - \frac { 3 } { 4 } \right) ^ { n } 2) n=0(eπ)n\sum _ { n = 0 } ^ { \infty } \left( \frac { e } { \pi } \right) ^ { n } 3) n=0(1)n\sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n }

(Multiple Choice)
4.8/5
(42)

Express f(x)=0xsinttdtf ( x ) = \int _ { 0 } ^ { x } \frac { \sin t } { t } d t as a Maclaurin Series.

(Essay)
4.8/5
(37)

Let X={0,1,2,3,,n,}X = \{ 0,1,2,3 , \ldots , n , \ldots \} be a discrete random variable with probability density function f(n)=eμμnn!f ( n ) = e ^ { - \mu } \frac { \mu ^ { n } } { n ! } , where 0<μ0 < \mu .(a) Show that n=0f(n)=1\sum _ { n = 0 } ^ { \infty } f ( n ) = 1 . Explain the significance of the value 1.(b) The expected value of the random variable X is defined by E(X)=n=0nf(n)E ( X ) = \sum _ { n = 0 } ^ { \infty } n f ( n ) . Show that E(X)=μE ( X ) = \mu . The distribution of X is known as the Poisson distribution.

(Essay)
4.9/5
(41)

Which of the following series converges? 1) n=1(1)nln(n+1)\sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n } } { \ln ( n + 1 ) } 2) n=1(1)nln(n+1)\sum _ { n = 1 } ^ { \infty } ( - 1 ) ^ { n } \ln ( n + 1 ) 3) 112+2334+4556+1 - \frac { 1 } { 2 } + \frac { 2 } { 3 } - \frac { 3 } { 4 } + \frac { 4 } { 5 } - \frac { 5 } { 6 } + \cdots

(Multiple Choice)
4.8/5
(36)

Construct an example of a power series that has [3,5)[ - 3,5 ) as its interval of convergence.

(Essay)
4.7/5
(41)

Find the Taylor series for y=lnxy = \ln x at 2.

(Essay)
4.8/5
(32)

Consider the sequence defined by an=(23)na _ { n } = \left( \frac { 2 } { 3 } \right) ^ { n } . (n starts at 1) (a) Write the first five terms of the sequence.(b) Determine the limit of the sequence.(c) Let bn=an+1anb _ { n } = \frac { a _ { n + 1 } } { a _ { n } } . Write the first five terms of this sequence.(d) Determine the limit of bnb _ { n } .

(Essay)
4.8/5
(32)

Find the coefficient of x3x ^ { 3 } in the Maclaurin series for f(x)=sin2xf ( x ) = \sin 2 x .

(Multiple Choice)
4.8/5
(37)

Which of the following series converges? 1) n=11n2+n\sum _ { n = 1 } ^ { \infty } \frac { 1 } { n ^ { 2 } + \sqrt { n } } 2) n=1nn2+lnn\sum _ { n = 1 } ^ { \infty } \frac { \sqrt { n } } { n ^ { 2 } + \ln n } 3) n=1nn3+2n2\sum _ { n = 1 } ^ { \infty } \frac { n } { \sqrt { n ^ { 3 } + 2 n ^ { 2 } } }

(Multiple Choice)
4.9/5
(42)

Tell which of the following series can be compared with geometric series to establish convergence.1) n=112+3n\sum _ { n = 1 } ^ { \infty } \frac { 1 } { 2 + 3 ^ { n } } 2) n=1nn3+4\sum _ { n = 1 } ^ { \infty } \frac { n } { n ^ { 3 } + 4 } 3) n=1n23n\sum _ { n = 1 } ^ { \infty } \frac { n ^ { 2 } } { 3 ^ { n } }

(Multiple Choice)
4.9/5
(33)

Determine the limit of the sequence an=(1)nna _ { n } = \frac { ( - 1 ) ^ { n } } { \sqrt { n } } .

(Multiple Choice)
4.7/5
(45)

Test the following series for convergence or divergence: n=2(1)n1nlnn\sum _ { n = 2 } ^ { \infty } \frac { ( - 1 ) ^ { n - 1 } } { n \ln n } .

(Short Answer)
4.7/5
(36)
Showing 301 - 320 of 341
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)