Exam 8: Infinite Sequences and Series

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the terms in the Maclaurin series for the function f(x)=ln(1+x)f ( x ) = \ln ( 1 + x ) , as far as the term in x3x ^ { 3 } .

(Multiple Choice)
4.7/5
(31)

Use the Integral Test to determine if the following series converges or diverges: n=1n(n2+1)2\sum _ { n = 1 } ^ { \infty } \frac { n } { \left( n ^ { 2 } + 1 \right) ^ { 2 } } .

(Essay)
4.8/5
(31)

Find the radius of convergence of n=0n!4n(x+3)n\sum _ { n = 0 } ^ { \infty } \frac { n ! } { 4 ^ { n } } ( x + 3 ) ^ { n } .

(Multiple Choice)
4.8/5
(36)

Which of the following series converges? 1) n=1(1)n\sum _ { n = 1 } ^ { \infty } ( - 1 ) ^ { n } 2) n=12n\sum _ { n = 1 } ^ { \infty } 2 ^ { n } 3) n=112+n3\sum _ { n = 1 } ^ { \infty } \frac { 1 } { 2 + n ^ { 3 } }

(Multiple Choice)
4.7/5
(32)

Which of the following is the degree 2 Taylor polynomial centered at a=1a = - 1 for f(x)=1xf ( x ) = \frac { 1 } { x } ? 1) 1xx2- 1 - x - x ^ { 2 } 2) 1(x+1)(x+1)2- 1 - ( x + 1 ) - ( x + 1 ) ^ { 2 } 3) 1(x+1)2(x+1)2- 1 - ( x + 1 ) - 2 ( x + 1 ) ^ { 2 }

(Multiple Choice)
4.9/5
(36)

Find the coefficient of x3x ^ { 3 } in the binomial series for 1(1+x)4\frac { 1 } { ( 1 + x ) ^ { 4 } } .

(Multiple Choice)
4.9/5
(28)

Which one of the following series diverges?

(Multiple Choice)
4.8/5
(32)

Determine whether or not k=21k(lnk)2\sum _ { k = 2 } ^ { \infty } \frac { 1 } { k ( \ln k ) ^ { 2 } } converges.

(Short Answer)
4.7/5
(24)

Show that f(x)=n=0(8x)nn!f ( x ) = \sum _ { n = 0 } ^ { \infty } \frac { ( 8 x ) ^ { n } } { n ! } is a solution to the differential equation dydx=8y\frac { d y } { d x } = 8 y .

(Essay)
4.9/5
(36)

Which of the three series below converges? 1) n=21nlnn\sum _ { n = 2 } ^ { \infty } \frac { 1 } { n \ln n } 2) n=11n(lnn)2\sum _ { n = 1 } ^ { \infty } \frac { 1 } { n ( \ln n ) ^ { 2 } } 3) n=21n(lnn)3\sum _ { n = 2 } ^ { \infty } \frac { 1 } { n ( \ln n ) ^ { 3 } }

(Multiple Choice)
4.8/5
(29)

Use the Ratio Test to examine the two series below, stating: absolute convergence (A), divergence (D), or Ratio Test inconclusive (I). 1) n=1n100\sum _ { n = 1 } ^ { \infty } n ^ { - 100 } 2) n=1100n\sum _ { n = 1 } ^ { \infty } 100 ^ { - n }

(Multiple Choice)
4.8/5
(40)

Find the sum of the series n=2(n1)xn\sum _ { n = 2 } ^ { \infty } ( n - 1 ) x ^ { n } , where x<1| x | < 1 .

(Essay)
4.8/5
(36)

Approximate the definite integral 00Sln(1+x)xdx\int _ { 0 } ^ { 0 S } \frac { \ln ( 1 + x ) } { x } d x accurate to six decimal places.

(Short Answer)
4.8/5
(32)

Find the second-degree Taylor polynomial for f(x)=xf ( x ) = \sqrt { x } , centered about a=100a = 100 . Also obtain a bound for the error in using this polynomial to approximate 100.1\sqrt { 100.1 } .

(Essay)
4.9/5
(42)

Examine the two series below for absolute convergence (A), convergence that is not absolute (C), or divergence (D). 1) n=1(1)n1ln(n+1)\sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n - 1 } } { \ln ( n + 1 ) } 2) n=1(1)n1(ln(n+1))2\sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n - 1 } } { ( \ln ( n + 1 ) ) ^ { 2 } }

(Multiple Choice)
4.8/5
(29)

Determine the limit of the sequence an=5cosnna _ { n } = \frac { 5 \cos n } { n } .

(Multiple Choice)
4.8/5
(40)

Which of the following is a power series? 1) 1+2x+3x41 + 2 x + 3 x ^ { 4 } 2) n=1(5x+1)2n\sum _ { n = 1 } ^ { \infty } ( 5 x + 1 ) ^ { 2 n } 3) n=12nxn\sum _ { n = 1 } ^ { \infty } \frac { 2 ^ { n } } { x ^ { n } }

(Multiple Choice)
4.8/5
(40)

Find the third-degree Taylor polynomial centered at x=1x = 1 for f(x)=lnxf ( x ) = \ln x . Use this result to approximate ln1.2\ln 1.2 .

(Essay)
4.9/5
(31)

According to the estimates found in the justification for the Integral Test, the sum of the series n=11n1.001\sum _ { n = 1 } ^ { \infty } \frac { 1 } { n ^ { 1.001 } } must lie between what two values?

(Multiple Choice)
4.9/5
(38)

Which of the following series converges? 1) n=11en\sum _ { n = 1 } ^ { \infty } \frac { 1 } { e ^ { n } } 2) n=11en\sum _ { n = 1 } ^ { \infty } \frac { 1 } { \sqrt { e ^ { n } } } 3) n=11en3\sum _ { n = 1 } ^ { \infty } \frac { 1 } { \sqrt [ 3 ] { e ^ { n } } }

(Multiple Choice)
4.8/5
(35)
Showing 41 - 60 of 341
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)