Exam 8: Infinite Sequences and Series

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find a power series representation for 1(1x)2\frac { 1 } { ( 1 - x ) ^ { 2 } } and give its radius of convergence.

(Essay)
4.8/5
(32)

Construct an example of power series that has (3,5)( 3,5 ) as its interval of convergence.

(Essay)
4.8/5
(33)

Consider the series n=1(1)n1n4n\sum _ { n = 1 } ^ { \infty } ( - 1 ) ^ { n - 1 } \frac { n } { 4 ^ { n } } .(a) Show that the series is absolutely convergent.(b) Calculate the sum of the first 3 terms to approximate the sum of the series.(c) Is the approximation in part (b) an overestimate or an underestimate? (d) Estimate the error involved in the approximation from part (b).

(Essay)
4.9/5
(34)

Find a power series representation for the function f(x)=ln1xf ( x ) = \ln \sqrt { 1 - x } and determine the radius of convergence.

(Essay)
4.9/5
(39)

Determine whether the series n=1n(n+1)!\sum _ { n = 1 } ^ { \infty } \frac { n } { ( n + 1 ) ! } is convergent or divergent. If it is convergent, find the sum.

(Essay)
4.9/5
(31)

Determine whether each of the following series is convergent or divergent.(a) n=112+3n\sum _ { n = 1 } ^ { \infty } \frac { 1 } { 2 + 3 ^ { - n } } (b) n=0πn3n\sum _ { n = 0 } ^ { \infty } \frac { \pi ^ { n } } { 3 ^ { n } } (c) n=1en3n\sum _ { n = 1 } ^ { \infty } \frac { e ^ { n } } { 3 ^ { n } }

(Short Answer)
4.9/5
(29)

Determine whether the series n=1ln(2n12n+1)\sum _ { n = 1 } ^ { \infty } \ln \left( \frac { 2 n - 1 } { 2 n + 1 } \right) is convergent or divergent. If it is convergent, find the sum.

(Short Answer)
4.8/5
(37)

Find the radius of convergence of n=1(x2)nn3n\sum _ { n = 1 } ^ { \infty } \frac { ( x - 2 ) ^ { n } } { n 3 ^ { n } } .

(Multiple Choice)
4.8/5
(40)

Let an=1+3n1+43na _ { n } = \frac { 1 + 3 ^ { n } } { 1 + 4 \cdot 3 ^ { n } } . (a) Find limnan\lim _ { n \rightarrow \infty } a _ { n } . (b) Is an\sum a _ { n } convergent? Justify your answer.

(Essay)
4.9/5
(45)

Find the coefficient of x3x ^ { 3 } in the binomial series for 1+x\sqrt { 1 + x } .

(Multiple Choice)
5.0/5
(34)

Use the sum of the first 10 terms to approximate the sum of the series n=11n(ln(2n))4+1\sum _ { n = 1 } ^ { \infty } \frac { 1 } { n ( \ln ( 2 n ) ) ^ { 4 } + 1 } . Estimate the error involved in this approximation.

(Essay)
4.8/5
(41)

Find the radius of convergence of n=0(3)n(x1)nn+1\sum _ { n = 0 } ^ { \infty } \frac { ( - 3 ) ^ { n } ( x - 1 ) ^ { n } } { \sqrt { n + 1 } } .

(Multiple Choice)
4.7/5
(38)

Consider a sequence of rectangles, R1R _ { 1 } , R2R _ { 2 } , R3R _ { 3 } , . . . illustrated in the figure below:  Consider a sequence of rectangles,  R _ { 1 }  ,  R _ { 2 }  ,  R _ { 3 }  , . . . illustrated in the figure below:    (a) The height  L _ { n }  of  R _ { n }  is given by  L _ { n } = f ( n )  where  f ( x ) = \frac { 1 } { x }  . Write down the first five terms of  \left\{ L _ { n } \right\}  and determine the limit of  \left\{ L _ { n } \right\}  . (b) Let  b _ { n } = \sum _ { k = 1 } ^ { n } L _ { k }  . Compare  b _ { n }  to  \int _ { n } ^ { n + 1 } ( 1 / x ) d x  . (c) Determine whether  \left\{ b _ { n } \right\}  converges or diverges. Justify your answer. (a) The height LnL _ { n } of RnR _ { n } is given by Ln=f(n)L _ { n } = f ( n ) where f(x)=1xf ( x ) = \frac { 1 } { x } . Write down the first five terms of {Ln}\left\{ L _ { n } \right\} and determine the limit of {Ln}\left\{ L _ { n } \right\} . (b) Let bn=k=1nLkb _ { n } = \sum _ { k = 1 } ^ { n } L _ { k } . Compare bnb _ { n } to nn+1(1/x)dx\int _ { n } ^ { n + 1 } ( 1 / x ) d x . (c) Determine whether {bn}\left\{ b _ { n } \right\} converges or diverges. Justify your answer.

(Essay)
4.9/5
(34)

Find the sum of the series 0.9+0.09+0.009+0.0009+0.9 + 0.09 + 0.009 + 0.0009 + \cdots .

(Multiple Choice)
5.0/5
(32)

Find the radius of convergence of n=0(3x)n\sum _ { n = 0 } ^ { \infty } ( 3 x ) ^ { n } .

(Multiple Choice)
4.9/5
(39)

Find the radius of convergence of n=0(3)n(x1)nn+1\sum _ { n = 0 } ^ { \infty } \frac { ( - 3 ) ^ { n } ( x - 1 ) ^ { n } } { \sqrt { n + 1 } } .

(Multiple Choice)
4.7/5
(49)

Find the second-degree Taylor polynomial of the function f(x)=xlnx at a=1ef ( x ) = x \ln x \text { at } a = \frac { 1 } { e } .

(Essay)
4.8/5
(35)

Construct an example of power series that has (3,5]( - 3,5 ] as its interval of convergence.

(Essay)
4.8/5
(43)

Which one of the following series converges?

(Multiple Choice)
4.8/5
(35)

Determine if the series n=16nn!\sum _ { n = 1 } ^ { \infty } \frac { 6 ^ { n } } { n ! } converges or diverges by the Ratio Test or Root Test.

(Essay)
4.8/5
(35)
Showing 201 - 220 of 341
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)