Exam 8: Infinite Sequences and Series

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Consider the series n=0(1)n1(4n)!\sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } \frac { 1 } { ( 4 n ) ! } .(a) Show that n=0(1)n1(4n)!\sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } \frac { 1 } { ( 4 n ) ! } is absolutely convergent.(b) Calculate the sum of the first 3 terms to approximate the sum of the series.(c) Estimate the error involved in the approximation from part (b).

(Essay)
4.9/5
(41)

Determine whether n=13nen2\sum _ { n = 1 } ^ { \infty } 3 n e ^ { - n ^ { 2 } } converges or diverges.

(Short Answer)
4.8/5
(37)

Find the terms in the power series expansion for the function f(x)=11+x2f ( x ) = \frac { 1 } { \sqrt { 1 + x ^ { 2 } } } , as far as the term in x3x ^ { 3 } .

(Essay)
4.7/5
(43)

Find a formula for the general term ana _ { n } of the sequence {1,6,120,5040,}\{ 1,6,120,5040 , \ldots \} .

(Multiple Choice)
4.7/5
(40)

If n=1cn(xn)n\sum _ { n = 1 } ^ { \infty } c _ { n } ( x - n ) ^ { n } is convergent at x=5x = 5 , what can be said about the convergence or divergence of the following series? (a) n=1cn\sum _ { n = 1 } ^ { \infty } c _ { n } (b) n=1cn(2)n\sum _ { n = 1 } ^ { \infty } c _ { n } ( - 2 ) ^ { n } (c) n=1cn4n\sum _ { n = 1 } ^ { \infty } c _ { n } 4 ^ { n }

(Essay)
4.8/5
(40)

Consider the series n=1(1)n11n4\sum _ { n = 1 } ^ { \infty } ( - 1 ) ^ { n - 1 } \frac { 1 } { n ^ { 4 } } .(a) Show that the series is absolutely convergent.(b) How many terms of the series do we need to add in order to find the sum to within 0.001? (c) What is the approximation sum in part (b)?

(Essay)
4.8/5
(37)

Determine the limit of the sequence an=(2)nna _ { n } = \frac { ( - 2 ) ^ { n } } { n } .

(Multiple Choice)
4.7/5
(34)

Find the terms of the Maclaurin series for 11x\frac { 1 } { \sqrt { 1 - x } } , as far as the term in x3x ^ { 3 } .

(Multiple Choice)
4.9/5
(44)

Consider the function f(x)=3x424x3+72x296x+49f ( x ) = 3 x ^ { 4 } - 24 x ^ { 3 } + 72 x ^ { 2 } - 96 x + 49 .(a) Find the fourth-degree Taylor polynomial of f at a=2a = 2 .(b) What is the remainder? (c) What is the absolute minimum value of f, and where does it occur?

(Essay)
4.9/5
(42)

A superball is dropped from a height of 8 ft. Each time it strikes the ground after falling from a height of t ft. it rebounds to a height of 34t\frac { 3 } { 4 } t feet. How long does it take for the ball to come to rest? (Use g=32ft/s2g = 32 \mathrm { ft } / \mathrm { s } ^ { 2 } .)

(Short Answer)
4.9/5
(37)

Find the coefficient of x4x ^ { 4 } in the Maclaurin series for f(x)=xcos(x3)f ( x ) = x \cos \left( x ^ { 3 } \right) .

(Multiple Choice)
4.8/5
(45)

Which of the following three tests will establish that the series n=13n(n+2)\sum _ { n = 1 } ^ { \infty } \frac { 3 } { n ( n + 2 ) } converges? 1) Comparison Test with n=13n2\sum _ { n = 1 } ^ { \infty } 3 n ^ { - 2 } 2) Limit Comparison Test with n=1n2\sum _ { n = 1 } ^ { \infty } n ^ { - 2 } 3) Comparison Test with n=13n1\sum _ { n = 1 } ^ { \infty } 3 n ^ { - 1 }

(Multiple Choice)
4.7/5
(33)

Determine whether n=1cosn+3nn2+5n\sum _ { n = 1 } ^ { \infty } \frac { \cos n + 3 ^ { n } } { n ^ { 2 } + 5 ^ { n } } is convergent or divergent.

(Short Answer)
4.9/5
(36)

Which of the following series converges? 1) n=11n\sum _ { n = 1 } ^ { \infty } \frac { 1 } { n } 2) n=1(1)nnlnn\sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n } n } { \ln n } 3) n=1(1)nn\sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n } } { n }

(Multiple Choice)
4.8/5
(34)

Find the sum of the series n=1(3)n14n\sum _ { n = 1 } ^ { \infty } \frac { ( - 3 ) ^ { n - 1 } } { 4 ^ { n } } .

(Multiple Choice)
4.9/5
(30)

Find the values of x for which the series n=1(2x+12)n\sum _ { n = 1 } ^ { \infty } \left( 2 x + \frac { 1 } { 2 } \right) ^ { n } converges.

(Multiple Choice)
4.9/5
(41)

Find the limit of the sequence an=ln(3n)lnna _ { n } = \frac { \ln ( 3 n ) } { \ln n } .

(Multiple Choice)
4.8/5
(43)

Find the sum of the series n=1(1)nn!\sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n } } { n ! } .

(Short Answer)
4.8/5
(38)

Use the binomial series to expand the function 4+x\sqrt { 4 + x } as a power series. Give the coefficient of x2x ^ { 2 } in that series.

(Multiple Choice)
4.9/5
(45)

Consider the two series: (a) k=2lnkk\sum _ { k = 2 } ^ { \infty } \frac { \ln k } { k } and (b) k=21klnk\sum _ { k = 2 } ^ { \infty } \frac { 1 } { k \ln k } . Suppose you compare (a) and (b) to the series k=11k\sum _ { k = 1 } ^ { \infty } \frac { 1 } { k } . What (if anything) can you conclude about the convergence or divergence of (a) and (b) using only the Comparison Test?

(Essay)
4.7/5
(37)
Showing 21 - 40 of 341
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)