Exam 8: Infinite Sequences and Series

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Use series to compute 01cosxdx\int _ { 0 } ^ { 1 } \cos \sqrt { x } d x correct to four decimal places.

(Short Answer)
4.9/5
(39)

Determine the limit of the sequence an=5cosn+nn2a _ { n } = \frac { 5 \cos n + n } { n ^ { 2 } } .

(Multiple Choice)
4.9/5
(43)

Find the radius of convergence of n=1n!xnnn\sum _ { n = 1 } ^ { \infty } \frac { n ! x ^ { n } } { n ^ { n } } .

(Multiple Choice)
4.9/5
(47)

Determine whether an=n+15n+3a _ { n } = \frac { \sqrt { n + 1 } } { 5 n + 3 } is increasing, decreasing, or not monotonic.

(Short Answer)
4.8/5
(33)

Construct an example of power series that has [3,5][ 3,5 ] as its interval of convergence.

(Essay)
4.9/5
(41)

A superball is dropped from a height of 8 ft. Each time it strikes the ground after falling from a height of t ft. it rebounds to a height of 34t\frac { 3 } { 4 } t feet. Find the total distance traveled by the ball.

(Short Answer)
4.7/5
(29)

Consider the series n=1(1)n1nn2+1\sum _ { n = 1 } ^ { \infty } ( - 1 ) ^ { n - 1 } \frac { n } { n ^ { 2 } + 1 } .(a) Show that the series is convergent, but not absolutely convergent.(b) Calculate the sum of the first 8 terms to approximate the sum of the series.(c) Is the approximation in part (b) an overestimate or an underestimate? (d) Estimate the error involved in the approximation from part (b).

(Essay)
4.9/5
(41)

Which of the following series converges? 1) n=1nn\sum _ { n = 1 } ^ { \infty } n ^ { - n } 2) n=1e100n\sum _ { n = 1 } ^ { \infty } e ^ { 100 - n } 3) n=1nnn!\sum _ { n = 1 } ^ { \infty } \frac { n ^ { n } } { n ! }

(Multiple Choice)
4.9/5
(43)

Find a formula for the general term ana _ { n } of the sequence {1,12,14,18,}\left\{ 1 , - \frac { 1 } { 2 } , \frac { 1 } { 4 } , - \frac { 1 } { 8 } , \ldots \right\} .

(Multiple Choice)
4.8/5
(36)

Find the Taylor series for xcosxx \cos x about the origin.

(Essay)
4.8/5
(37)

Find a power series representation for the function f(x)=1x1+xf ( x ) = \frac { 1 - x } { 1 + x } and give its interval of convergence.

(Essay)
4.7/5
(34)

Test the following series for convergence or divergence: 552+5558+511514+5 - \frac { 5 } { 2 } + \frac { 5 } { 5 } - \frac { 5 } { 8 } + \frac { 5 } { 11 } - \frac { 5 } { 14 } + \cdots .

(Short Answer)
4.9/5
(35)

Find the second-degree Taylor polynomial of the function f(x)=xex at a=1f ( x ) = x e ^ { x } \text { at } a = - 1 .

(Essay)
4.9/5
(35)

Determine whether the series n=1n15n+1\sum _ { n = 1 } ^ { \infty } \frac { n - 1 } { 5 n + 1 } is convergent or divergent. If it is convergent, find the sum.

(Short Answer)
4.8/5
(44)

Use the 3rd-degree Taylor polynomial of f(x)=xf ( x ) = \sqrt { x } about x=4x = 4 to approximate 6\sqrt { 6 } . Use the remainder term to give an upper bound for the error in this approximation.

(Essay)
4.8/5
(22)

A sequence is defined by bn=1.0001nb _ { n } = 1.0001 ^ { n } .(a) Calculate b103b _ { 10 ^ { 3 } } and b105b _ { 10 ^ { 5 } } .(b) Determine whether bnb _ { n } converges or diverges. If it converges, find the limit.

(Essay)
4.8/5
(38)

Given n=11n5\sum _ { n = 1 } ^ { \infty } \frac { 1 } { n ^ { 5 } } .(a) Approximate the sum of the series n=11n5\sum _ { n = 1 } ^ { \infty } \frac { 1 } { n ^ { 5 } } by using the sum of the first 4 terms.(b) Estimate the error involved in the approximation in part (a).(c) How many terms are required to ensure that the sum is accurate to within 0.001?

(Essay)
4.9/5
(37)

Find the sum of the series n=1n(n+1)\sum _ { n = 1 } ^ { \infty } \frac { n } { ( \sqrt { n } + 1 ) } .

(Multiple Choice)
4.9/5
(32)

Determine whether the given series is convergent or divergent. Indicate the test you use and show any necessary computation.(a) n=12n2+15n3n+4\sum _ { n = 1 } ^ { \infty } \frac { 2 n ^ { 2 } + 1 } { 5 n ^ { 3 } - n + 4 } (e) n=1tan1n\sum _ { n = 1 } ^ { \infty } \tan ^ { - 1 } n (i) n=14n2n+3n\sum _ { n = 1 } ^ { \infty } \frac { 4 ^ { n } } { 2 ^ { n } + 3 ^ { n } } (b) n=1(1+sinnn)2\sum _ { n = 1 } ^ { \infty } \left( \frac { 1 + \sin n } { n } \right) ^ { 2 } (f) n=11n1+lnn\sum _ { n = 1 } ^ { \infty } \frac { 1 } { n \sqrt { 1 + \ln n } } (j) n=1ln(1+1n)\sum _ { n = 1 } ^ { \infty } \ln \left( 1 + \frac { 1 } { n } \right) (c) n=1nsin(1n)\sum _ { n = 1 } ^ { \infty } n \cdot \sin \left( \frac { 1 } { n } \right) (g) n=1lnn(n+1)3\sum _ { n = 1 } ^ { \infty } \frac { \ln n } { ( n + 1 ) ^ { 3 } } (k) n=1nen2\sum _ { n = 1 } ^ { \infty } n \cdot e ^ { - n ^ { 2 } } (d) n=1(2nn+3n3)\sum _ { n = 1 } ^ { \infty } \left( \frac { 2 } { n \sqrt { n } } + \frac { 3 } { n ^ { 3 } } \right) (h) n=1lnnn\sum _ { n = 1 } ^ { \infty } \frac { \ln n } { n }

(Short Answer)
4.8/5
(40)

Find the coefficient of x2x ^ { 2 } in the Maclaurin series for f(x)=1/(x+2)f ( x ) = 1 / ( x + 2 ) .

(Short Answer)
4.9/5
(45)
Showing 181 - 200 of 341
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)