Exam 8: Infinite Sequences and Series

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the sum of the series n=11n24n2+n+1\sum _ { n = 1 } ^ { \infty } \frac { 1 - n ^ { 2 } } { 4 n ^ { 2 } + n + 1 } .

(Multiple Choice)
4.7/5
(41)

A car purchased for $18,000 depreciates 5% each year.(a) If PnP _ { n } is the value of the car after n years, find a formula for PnP _ { n } .(b) What does the value of the car approach as time goes on?

(Essay)
4.8/5
(41)

Construct an example of power series that has (3,5]( 3,5 ] as its interval of convergence.

(Essay)
4.8/5
(35)

Determine the limit of the sequence an=[ln(n+1)ln(n)]a _ { n } = [ \ln ( n + 1 ) - \ln ( n ) ] .

(Multiple Choice)
4.9/5
(34)

(a) Use series to compute 01xcosxdx\int _ { 0 } ^ { 1 } x \cos x d x correct to three decimal places.(b) Use integration by parts to compute 01xcosxdx\int _ { 0 } ^ { 1 } x \cos x d x .(c) Compare your answers in parts (a) and (b) above.

(Short Answer)
4.8/5
(37)

For which of the following series will the Test for Divergence establish divergence? 1) n=1(1)n\sum _ { n = 1 } ^ { \infty } ( - 1 ) ^ { n } 2) n=1n1\sum _ { n = 1 } ^ { \infty } n ^ { - 1 } 3) n=1n+12n\sum _ { n = 1 } ^ { \infty } \frac { n + 1 } { 2 n }

(Multiple Choice)
4.9/5
(43)

Find the sum of the series n=01(2n)!\sum _ { n = 0 } ^ { \infty } \frac { 1 } { ( 2 n ) ! } .

(Essay)
4.8/5
(37)

Find the sum of the series 2+12+18+132+2 + \frac { 1 } { 2 } + \frac { 1 } { 8 } + \frac { 1 } { 32 } + \cdots .

(Multiple Choice)
4.8/5
(40)

Give the 4th-degree Taylor polynomial for f(x)=xf ( x ) = \sqrt { x } about the point x=4x = 4 . Using this polynomial, approximate 4.2\sqrt { 4.2 } . Give the maximum error for this approximation.

(Essay)
4.7/5
(39)

For the series n2n1/2lnn\sum _ { n - 2 } ^ { \infty } \frac { n ^ { 1 / 2 } } { \ln n } , tell whether or not it converges, and indicate what test you used. If the test involves a limit, give the limit. If the test involves a comparison, give the comparison.

(Essay)
4.7/5
(39)

Give the Taylor series expansion of f(x)=sinxf ( x ) = \sin x about the point c=π4c = \frac { \pi } { 4 } .

(Essay)
4.8/5
(36)

Determine whether an=3n+42n+5a _ { n } = \frac { 3 n + 4 } { 2 n + 5 } is increasing, decreasing, or not monotonic.

(Short Answer)
4.9/5
(34)

Find the third-degree Taylor polynomial of the function f(x)=0xsint2dt at a=0f ( x ) = \int _ { 0 } ^ { x } \sin t ^ { 2 } d t \text { at } a = 0 .

(Essay)
4.8/5
(43)

Consider the recursive sequence defined by x1=1;xn+1=xn2+22xn,n>1x _ { 1 } = 1 ; x _ { n + 1 } = \frac { x _ { n } ^ { 2 } + 2 } { 2 x _ { n } } , n > 1 . You may assume the sequence to be monotonic (after the first term) and bounded and hence convergent. Find its limit.

(Short Answer)
4.8/5
(33)

A sequence of right triangles, A1A _ { 1 } , A2A _ { 2 } , A3A _ { 3 } , ... is given in the figure below:  A sequence of right triangles,  A _ { 1 }  ,  A _ { 2 }  ,  A _ { 3 }  , ... is given in the figure below:   (a) Let  a _ { n } = \operatorname { area } \left( A _ { n } \right)  . Determine an expression for  a _ { n }  and find the limit of  a _ { n }  .(b) Let  b _ { n } = \sum _ { k = 1 } ^ { n } a _ { k }  . Use geometric reasoning to determine the limit of  b _ { n }  . (a) Let an=area(An)a _ { n } = \operatorname { area } \left( A _ { n } \right) . Determine an expression for ana _ { n } and find the limit of ana _ { n } .(b) Let bn=k=1nakb _ { n } = \sum _ { k = 1 } ^ { n } a _ { k } . Use geometric reasoning to determine the limit of bnb _ { n } .

(Essay)
4.9/5
(40)

Which of the three series below converges? 1) n=1(2n13n)n\sum _ { n = 1 } ^ { \infty } \left( \frac { 2 n - 1 } { 3 n } \right) ^ { n } 2) n=112n+n\sum _ { n = 1 } ^ { \infty } \frac { 1 } { 2 ^ { n } + n } 3) n=12n+(3)n3n\sum _ { n = 1 } ^ { \infty } \frac { 2 ^ { n } + ( - 3 ) ^ { n } } { 3 ^ { n } }

(Multiple Choice)
4.7/5
(33)

Find a power series representation for the function f(x)=x213xf ( x ) = \frac { x ^ { 2 } } { 1 - 3 x } .

(Essay)
4.9/5
(36)

Which of the three series below converges? 1) n=1(1n45+2n3)\sum _ { n = 1 } ^ { \infty } \left( \frac { 1 } { \sqrt [ 5 ] { n ^ { 4 } } } + \frac { 2 } { n ^ { 3 } } \right) 2) n=1lnnn2\sum _ { n = 1 } ^ { \infty } \frac { \ln n } { n ^ { 2 } } 3) n=1sin(1/n)n\sum _ { n = 1 } ^ { \infty } \frac { \sin ( 1 / n ) } { n }

(Multiple Choice)
4.8/5
(38)

Consider the recursive sequence defined by x1=1;xn+1=xn2+22xn,n>1x _ { 1 } = 1 ; x _ { n + 1 } = \frac { x _ { n } ^ { 2 } + 2 } { 2 x _ { n } } , n > 1 . Evaluate the first three terms of this sequence.

(Essay)
4.8/5
(44)

Which of the following is the power series centered at a=0a = 0 for f(x)=1x2+4f ( x ) = \frac { 1 } { x ^ { 2 } + 4 } ? 1) n=0(1)n4n+1xn\sum _ { n = 0 } ^ { \infty } \frac { ( - 1 ) ^ { n } } { 4 ^ { n + 1 } } x ^ { n } 2) n=0(1)n4n+1x2n\sum _ { n = 0 } ^ { \infty } \frac { ( - 1 ) ^ { n } } { 4 ^ { n + 1 } } x ^ { 2 n } 3) n=0(1)n4nx2n\sum _ { n = 0 } ^ { \infty } \frac { ( - 1 ) ^ { n } } { 4 ^ { n } } x ^ { 2 n }

(Multiple Choice)
4.8/5
(34)
Showing 241 - 260 of 341
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)