Exam 8: Infinite Sequences and Series

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the limit of the sequence an=enn!a _ { n } = \frac { e ^ { n } } { n ! } .

(Multiple Choice)
4.9/5
(36)

Find the limit of the sequence an=cos(nπ2)a _ { n } = \cos \left( \frac { n \pi } { 2 } \right) .

(Multiple Choice)
4.7/5
(26)

Examine the two series below for absolute convergence (A), convergence that is not absolute (C), or divergence (D). 1) n=1(1)n\sum _ { n = 1 } ^ { \infty } ( - 1 ) ^ { n } 2) n=1(1)n1n1\sum _ { n = 1 } ^ { \infty } ( - 1 ) ^ { n - 1 } n ^ { - 1 }

(Multiple Choice)
4.8/5
(38)

Find the third-degree Taylor polynomial of the function f(x)=ex2x2cosx at a=0f ( x ) = e ^ { x ^ { 2 } } - x ^ { 2 } \cos \sqrt { x } \text { at } a = 0 .

(Essay)
4.9/5
(41)

Which of the following three tests will establish that the series n=1n2n5+1\sum _ { n = 1 } ^ { \infty } \frac { n } { \sqrt { 2 n ^ { 5 } + 1 } } converges? 1) Comparison Test with n=1n5/2\sum _ { n = 1 } ^ { \infty } n ^ { - 5 / 2 } 2) Comparison Test with n=1n3/2\sum _ { n = 1 } ^ { \infty } n ^ { - 3 / 2 } 3) Comparison Test with n=1n1/2\sum _ { n = 1 } ^ { \infty } n ^ { - 1 / 2 }

(Multiple Choice)
4.7/5
(43)

Find the interval of convergence for k=1(1)k(x3)k5k(k+1)\sum _ { k = 1 } ^ { \infty } \frac { ( - 1 ) ^ { k } ( x - 3 ) ^ { k } } { 5 ^ { k } ( k + 1 ) } .

(Essay)
4.9/5
(34)

If n=2(a1+a)n=3\sum _ { n = 2 } ^ { \infty } \left( \frac { a } { 1 + a } \right) ^ { n } = 3 and a>0a > 0 , determine the value of a.

(Essay)
4.8/5
(43)

A sequence is defined by an=0.9999na _ { n } = 0.9999 ^ { n } .(a) Calculate a103a _ { 10 ^ { 3 } } and a105a _ { 10 ^ { 5 } } .(b) Determine whether ana _ { n } converges or diverges. If it converges, find the limit.

(Essay)
4.9/5
(40)

Find a formula for the general term ana _ { n } of the sequence {1,1210,1915,2620,3325,}\left\{ 1 , - \frac { 12 } { 10 } , \frac { 19 } { 15 } , - \frac { 26 } { 20 } , \frac { 33 } { 25 } , \ldots \right\} .

(Multiple Choice)
4.7/5
(40)

Find the Maclaurin series expansion with n=5n = 5 for f(x)=2xf ( x ) = 2 ^ { x } . Use this expansion to approximate 20.12 ^ { 0.1 } .

(Essay)
4.8/5
(37)

Consider the power series k=1(1)kkxk\sum _ { k = 1 } ^ { \infty } \frac { ( - 1 ) ^ { k } } { k } x ^ { k } .(a) Find the radius of convergence.(b) Determine what happens at the end points (absolute or conditional convergence, or divergence).

(Essay)
4.8/5
(31)

Find the limit of the sequence an=1+(45)na _ { n } = 1 + \left( - \frac { 4 } { 5 } \right) ^ { n } .

(Multiple Choice)
4.9/5
(43)

Find an approximation for sin(0.1)\sin ( 0.1 ) accurate to 6 decimal places.(Note: sin's argument is measured in radians.)

(Short Answer)
4.9/5
(39)

Which one of the following series is divergent?

(Multiple Choice)
4.8/5
(36)

Find the terms of the Maclaurin series for 11+2x\frac { 1 } { \sqrt { 1 + 2 x } } , as far as the term in x3x ^ { 3 } .

(Essay)
4.8/5
(46)

Find the radius of convergence of n=1258(3n1)3711(4n1)(x+1)n\sum _ { n = 1 } ^ { \infty } \frac { 2 \cdot 5 \cdot 8 \cdots ( 3 n - 1 ) } { 3 \cdot 7 \cdot 11 \cdots ( 4 n - 1 ) } ( x + 1 ) ^ { n } .

(Multiple Choice)
4.8/5
(40)

Find the Taylor polynomial T3(x)T _ { 3 } ( x ) for the function f(x)=5x2+4xf ( x ) = \frac { 5 x } { 2 + 4 x } at the point x0=0x _ { 0 } = 0 .

(Essay)
4.8/5
(45)

Find the Maclaurin series expansion for f(x)=ln(1x)f ( x ) = \ln ( 1 - x ) and determine the interval of convergence.

(Essay)
4.9/5
(42)

If f(x)=ex2f ( x ) = e ^ { x ^ { 2 } } , compute f(11)(0)f ^ { ( 11 ) } ( 0 ) .

(Short Answer)
4.9/5
(35)

Evaluate 11+x5dx\int \frac { 1 } { 1 + x ^ { 5 } } d x as a power series.

(Essay)
4.9/5
(38)
Showing 121 - 140 of 341
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)