Exam 8: Infinite Sequences and Series

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Examine the two series below for absolute convergence (A), convergence that is not absolute (C), or divergence (D). 1) n=1(1)n1n1\sum _ { n = 1 } ^ { \infty } ( - 1 ) ^ { n - 1 } n ^ { - 1 } 2) n=1(1)n1n2\sum _ { n = 1 } ^ { \infty } ( - 1 ) ^ { n - 1 } n ^ { - 2 }

(Multiple Choice)
4.8/5
(36)

Find the sum of the series n=1n23n\sum _ { n = 1 } ^ { \infty } \frac { n ^ { 2 } } { 3 ^ { n } } .

(Short Answer)
4.8/5
(35)

Estimate the range of values of x for which the approximation x2+3=2+12(x1)+316(x1)2\sqrt { x ^ { 2 } + 3 } = 2 + \frac { 1 } { 2 } ( x - 1 ) + \frac { 3 } { 16 } ( x - 1 ) ^ { 2 } is accurate to within 0.0002.

(Short Answer)
4.7/5
(40)

Find the coefficient of x4x ^ { 4 } in the Maclaurin series for f(x)=e2xf ( x ) = e ^ { - 2 x } .

(Multiple Choice)
4.7/5
(36)

Which of the following is the power series centered at a=0a = 0 for f(x)=11+4xf ( x ) = \frac { 1 } { 1 + 4 x } ? 1) n=0(1)n4nxn\sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } 4 ^ { n } x ^ { n } 2) n=04nxn\sum _ { n = 0 } ^ { \infty } 4 ^ { n } x ^ { n } 3) n=0(1)n4nxn\sum _ { n = 0 } ^ { \infty } \frac { ( - 1 ) ^ { n } } { 4 ^ { n } } x ^ { n }

(Multiple Choice)
5.0/5
(37)

Test the following series for convergence or divergence: n=1(1)n1(n+9)(n+10)n(n+1)\sum _ { n = 1 } ^ { \infty } ( - 1 ) ^ { n - 1 } \frac { ( n + 9 ) ( n + 10 ) } { n ( n + 1 ) } .

(Short Answer)
4.9/5
(34)

The first three derivatives of f(x)=(x+4)3/2f ( x ) = ( x + 4 ) ^ { 3 / 2 } are f(x)=3(x+4)1/22f ^ { \prime } ( x ) = \frac { 3 ( x + 4 ) ^ { 1 / 2 } } { 2 } , f(x)=34(x+4)1/2f ^ { \prime \prime } ( x ) = \frac { 3 } { 4 ( x + 4 ) ^ { 1 / 2 } } and f(x)=38(x+4)3/2f ^ { \prime \prime } ( x ) = \frac { - 3 } { 8 ( x + 4 ) ^ { 3 / 2 } } .(a) Give the first four terms of the Taylor series associated with f at a=3a = - 3 .(b) Give the second-order Taylor polynomial, T2(x)T _ { 2 } ( x ) , associated with f at a=0a = 0 .(c) Suppose that x0x \geq 0 and that T2(x)T _ { 2 } ( x ) from part (b) is used to approximate f(x)f ( x ) . Prove that the error in this approximation does not exceed x3128\frac { x ^ { 3 } } { 128 } .

(Essay)
4.8/5
(35)

Which of the following is the power series centered at a=0a = 0 for f(x)=1x+4f ( x ) = \frac { 1 } { x + 4 } ? 1) n=0(1)n4nxn\sum _ { n = 0 } ^ { \infty } \frac { ( - 1 ) ^ { n } } { 4 ^ { n } } x ^ { n } 2) n=0(1)n4n+1xn\sum _ { n = 0 } ^ { \infty } \frac { ( - 1 ) ^ { n } } { 4 ^ { n + 1 } } x ^ { n } 3) n=1(1)n14nxn1\sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n - 1 } } { 4 ^ { n } } x ^ { n - 1 }

(Multiple Choice)
4.8/5
(33)

Find the values of x for which the series n=1(x1)n\sum _ { n = 1 } ^ { \infty } ( x - 1 ) ^ { n } converges.

(Multiple Choice)
4.8/5
(34)

Which of the following is the degree 2 Taylor polynomial centered at a=3a = 3 for f(x)=lnxf ( x ) = \ln x ? 1) ln3+x33(x3)218\ln 3 + \frac { x - 3 } { 3 } - \frac { ( x - 3 ) ^ { 2 } } { 18 } 2) ln3+x33(x3)29\ln 3 + \frac { x - 3 } { 3 } - \frac { ( x - 3 ) ^ { 2 } } { 9 } 3) ln3x33+(x3)218\ln 3 - \frac { x - 3 } { 3 } + \frac { ( x - 3 ) ^ { 2 } } { 18 }

(Multiple Choice)
4.7/5
(32)

Construct an example of a power series that has [3,5][ - 3,5 ] as its interval of convergence.

(Essay)
4.9/5
(30)

If a sequence is bounded, does the sequence necessarily have a limit? Explain.

(Essay)
4.8/5
(51)

Which of the following series converges? 1) n=1sin(1n2)\sum _ { n = 1 } ^ { \infty } \sin \left( \frac { 1 } { n ^ { 2 } } \right) 2) n=1(1)nn3\sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n } } { \sqrt [ 3 ] { n } } 3) n=1(3n+12n+1)n\sum _ { n = 1 } ^ { \infty } \left( \frac { 3 n + 1 } { 2 n + 1 } \right) ^ { n }

(Multiple Choice)
4.9/5
(39)

Find the radius of convergence of the Maclaurin series for f(x)=14+x2f ( x ) = \frac { 1 } { 4 + x ^ { 2 } } .

(Multiple Choice)
4.8/5
(39)

Determine whether an=sin(nπ2)a _ { n } = \sin \left( \frac { n \pi } { 2 } \right) converges or diverges. If it converges, find the limit.

(Short Answer)
4.8/5
(31)

Which of the following series converges? 1) n=1(n2+3n)n\sum _ { n = 1 } ^ { \infty } \left( \frac { n } { 2 + 3 n } \right) ^ { n } 2) n=2n+1n41\sum _ { n = 2 } ^ { \infty } \frac { n + 1 } { \sqrt { n ^ { 4 } - 1 } } 3) n=111+n2\sum _ { n = 1 } ^ { \infty } \frac { 1 } { 1 + n ^ { 2 } }

(Multiple Choice)
4.8/5
(40)

A rubber ball is dropped from a height of 10 feet and bounces to 34\frac { 3 } { 4 } its height after each fall. If it continues to bounce until it comes to rest, find the total distance in feet it travels.

(Multiple Choice)
4.7/5
(34)

Which of the following series converges? 1) n=14n3n+2n\sum _ { n = 1 } ^ { \infty } \frac { 4 ^ { n } } { 3 ^ { n } + 2 ^ { n } } 2) n=13nn+5n\sum _ { n = 1 } ^ { \infty } \frac { 3 ^ { n } } { n + 5 ^ { n } } 3) n=1n1+4n\sum _ { n = 1 } ^ { \infty } \frac { n } { 1 + 4 n }

(Multiple Choice)
4.9/5
(36)

Tell which of the following three series cannot be found convergent by the Ratio Test but can be found convergent by comparison with a p-series. 1) n=112+3n\sum _ { n = 1 } ^ { \infty } \frac { 1 } { 2 + 3 ^ { n } } 2) n=1nn3+4\sum _ { n = 1 } ^ { \infty } \frac { n } { n ^ { 3 } + 4 } 3) n=1nn2+n\sum _ { n = 1 } ^ { \infty } \frac { \sqrt { n } } { n ^ { 2 } + n }

(Multiple Choice)
4.9/5
(36)

The series n=0rn\sum _ { n = 0 } ^ { \infty } r ^ { n } converges if and only if

(Multiple Choice)
4.8/5
(31)
Showing 161 - 180 of 341
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)