Exam 8: Infinite Sequences and Series

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the coefficient of (x2)2( x - 2 ) ^ { 2 } in the Taylor polynomial T2(x)T _ { 2 } ( x ) for the function x3x ^ { 3 } at the number 2.

(Multiple Choice)
4.8/5
(31)

Find the radius of convergence of the series n=13n(x+1)nnn\sum _ { n = 1 } ^ { \infty } \frac { 3 ^ { n } ( x + 1 ) ^ { n } } { n ^ { n } } .

(Multiple Choice)
4.7/5
(33)

Estimate the range of values of x for which the approximation excosx=1+x13x3e ^ { x } \cos x = 1 + x - \frac { 1 } { 3 } x ^ { 3 } is accurate to within 0.001.

(Short Answer)
4.9/5
(36)

Determine whether the series n=11(3n1)(3n+2)\sum _ { n = 1 } ^ { \infty } \frac { 1 } { ( 3 n - 1 ) ( 3 n + 2 ) } is convergent or divergent. If it is convergent, find the sum.

(Short Answer)
4.8/5
(35)

Which of the three series below converges? 1) n=11n\sum _ { n = 1 } ^ { \infty } \frac { 1 } { n } 2) n=11n1.1\sum _ { n = 1 } ^ { \infty } \frac { 1 } { n ^ { 1.1 } } 3) n=11n09\sum _ { n = 1 } ^ { \infty } \frac { 1 } { n ^ { 09 } }

(Multiple Choice)
4.9/5
(46)

Determine whether the given series is convergent (but not absolutely convergent), absolutely convergent, or divergent. n=1(1)n+1nn2+1\sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n + 1 } n } { n ^ { 2 } + 1 }

(Short Answer)
4.8/5
(30)

Find the radius of convergence of n=1(1)n(x+2)nn3n\sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n } ( x + 2 ) ^ { n } } { \sqrt { n } 3 ^ { n } } .

(Multiple Choice)
4.9/5
(45)

Consider the series n=1(1)n11n4+1\sum _ { n = 1 } ^ { \infty } ( - 1 ) ^ { n - 1 } \frac { 1 } { n ^ { 4 } + 1 } .(a) Show that the series is absolutely convergent.(b) How many terms of the series do we need to add in order to find the sum to within 0.01? (c) What is the approximation sum in part (b)?

(Essay)
4.7/5
(39)

(a) Express 0xsin(t2)t2dt\int _ { 0 } ^ { x } \frac { \sin \left( t ^ { 2 } \right) } { t ^ { 2 } } d t as a Maclaurin series.(b) Evaluate 003sin(x2)x2dx\int _ { 0 } ^ { 03 } \frac { \sin \left( x ^ { 2 } \right) } { x ^ { 2 } } d x as a series.

(Essay)
4.9/5
(36)

Use the binomial series to expand 1+x23\sqrt [ 3 ] { 1 + x ^ { 2 } } as a power series. State the radius of convergence.

(Essay)
4.9/5
(36)

Which of the following series is convergent, but not absolutely convergent? (a) n=11n\sum _ { n = 1 } ^ { \infty } \frac { 1 } { n } (b) n=1sinnn2\sum _ { n = 1 } ^ { \infty } \frac { \sin n } { n ^ { 2 } } (c) n=1(1)nn\sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n } } { \sqrt { n } } (d) n=13n2n+n\sum _ { n = 1 } ^ { \infty } \frac { 3 ^ { n } } { 2 ^ { n } + \sqrt { n } } (e) n=112nn+1\sum _ { n = 1 } ^ { \infty } \frac { 1 - 2 n } { n + 1 }

(Essay)
4.9/5
(38)

Find the interval of convergence of n=0n4n(x+3)n\sum _ { n = 0 } ^ { \infty } \frac { n } { 4 ^ { n } } ( x + 3 ) ^ { n } .

(Multiple Choice)
4.8/5
(44)

Find the values of x for which the series n=1(2x)n\sum _ { n = 1 } ^ { \infty } ( 2 x ) ^ { n } converges.

(Multiple Choice)
4.9/5
(39)

Find the radius of convergence of n=1(x+2)nn23n\sum _ { n = 1 } ^ { \infty } \frac { ( x + 2 ) ^ { n } } { n ^ { 2 } 3 ^ { n } } .

(Multiple Choice)
4.8/5
(40)

Consider the series n=0(1)n(2n)!\sum _ { n = 0 } ^ { \infty } \frac { ( - 1 ) ^ { n } } { ( 2 n ) ! } .(a) Show that the series is absolutely convergent.(b) How many terms of the series do we need to add in order to find the sum to within 0.0001? (c) What is the approximation sum in part (b)?

(Essay)
4.7/5
(41)

Find the value of n=23n+5n15n\sum _ { n = 2 } ^ { \infty } \frac { 3 ^ { n } + 5 ^ { n } } { 15 ^ { n } } .

(Short Answer)
4.9/5
(40)

(a) Express 0xsin(t2)dt\int _ { 0 } ^ { x } \sin \left( t ^ { 2 } \right) d t as a Maclaurin series.(b) Evaluate 003sin(x2)dx\int _ { 0 } ^ { 03 } \sin \left( x ^ { 2 } \right) d x as a series.

(Essay)
5.0/5
(39)

Find the limit of the sequence an=(n+en)1/na _ { n } = \left( n + e ^ { n } \right) ^ { 1 / n } .

(Multiple Choice)
4.8/5
(33)

Determine whether the series 112+1418+1 - \frac { 1 } { 2 } + \frac { 1 } { 4 } - \frac { 1 } { 8 } + \cdots is convergent or divergent. If it is convergent, find its sum.

(Essay)
4.8/5
(39)

Find the interval of convergence of n=0xn3n+1\sum _ { n = 0 } ^ { \infty } \frac { x ^ { n } } { 3 n + 1 } .

(Multiple Choice)
4.8/5
(43)
Showing 261 - 280 of 341
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)