Exam 8: Infinite Sequences and Series

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the radius of convergence of n=1258(3n1)nxn\sum _ { n = 1 } ^ { \infty } \frac { 2 \cdot 5 \cdot 8 \cdots ( 3 n - 1 ) } { n } x ^ { n } .

(Short Answer)
4.8/5
(36)

If a1=1a _ { 1 } = 1 and an+1=1+ana _ { n + 1 } = \sqrt { 1 + a _ { n } } for n1n \geq 1 and limnan=L\lim _ { n \rightarrow \infty } a _ { n } = L is assumed to exist, then what must LL be?

(Multiple Choice)
4.8/5
(36)

If 3n1n+1<xn<3n2+6n+2n2+2n+1\frac { 3 n - 1 } { n + 1 } < x _ { n } < \frac { 3 n ^ { 2 } + 6 n + 2 } { n ^ { 2 } + 2 n + 1 } for all positive integers n, then find limnxn\lim _ { n \rightarrow \infty } x _ { n } .

(Essay)
4.9/5
(47)

Find the interval of convergence of n=0xn2n2\sum _ { n = 0 } ^ { \infty } \frac { x ^ { n } } { 2 n ^ { 2 } } .

(Multiple Choice)
4.7/5
(41)

Find the values of x for which the series n=1(1x2+2)n\sum _ { n = 1 } ^ { \infty } \left( \frac { 1 } { x ^ { 2 } + 2 } \right) ^ { n } converges.

(Multiple Choice)
4.8/5
(31)

Which one of the following series diverge?

(Multiple Choice)
4.9/5
(41)

Determine the limit of the sequence an=n!(n+3)!a _ { n } = \frac { n ! } { ( n + 3 ) ! } .

(Multiple Choice)
4.8/5
(40)

Determine if the series n=1258(3n1)6nn!\sum _ { n = 1 } ^ { \infty } \frac { 2 \cdot 5 \cdot 8 \cdot \ldots \cdot ( 3 n - 1 ) } { 6 ^ { n } n ! } converges or diverges by the Ratio Test or Root Test.

(Essay)
4.9/5
(38)

Find the interval of convergence of the power series n=1(1)n(x2)nn3\sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n } ( x - 2 ) ^ { n } } { \sqrt [ 3 ] { n } } .

(Essay)
4.8/5
(33)

Which of the following series converges? 1) n=1(1n+2n3)\sum _ { n = 1 } ^ { \infty } \left( \frac { 1 } { \sqrt { n } } + \frac { 2 } { n ^ { 3 } } \right) 2) n=1(1n1n+1)\sum _ { n = 1 } ^ { \infty } \left( \frac { 1 } { n } - \frac { 1 } { n + 1 } \right) 3) n=1cos(1/n)n2\sum _ { n = 1 } ^ { \infty } \frac { \cos ( 1 / n ) } { n ^ { 2 } }

(Multiple Choice)
4.9/5
(31)

A sequence is defined by an=rna _ { n } = r ^ { n } , where r is a constant. For what values of r will the sequence converge? What is the limit?

(Essay)
4.9/5
(31)

Given n=11n4\sum _ { n = 1 } ^ { \infty } \frac { 1 } { n ^ { 4 } } .(a) Approximate the sum of the series n=11n4\sum _ { n = 1 } ^ { \infty } \frac { 1 } { n ^ { 4 } } by using the sum of the first 4 terms.(b) Estimate the error involved in the approximation in part (a).(c) How many terms are required to ensure that the sum is accurate to within 0:001?

(Essay)
4.9/5
(40)

Consider the sequence defined by an=(1)na _ { n } = ( - 1 ) ^ { n } . (n starts at 1) (a) Write the first five terms of the sequence.(b) Determine the limit of the sequence.(c) Let bn=an+1anb _ { n } = \frac { a _ { n + 1 } } { a _ { n } } . Write the first five terms of this sequence.(d) Determine the limit of bnb _ { n } .(e) Let cn=k=1nakc _ { n } = \sum _ { k = 1 } ^ { n } a _ { k } . Write the first five terms of this sequence.(f) Determine the limit of cnc _ { n } .

(Essay)
4.7/5
(35)

If a1=1a _ { 1 } = 1 and an+1=3(1an)a _ { n + 1 } = 3 - \left( \frac { 1 } { a _ { n } } \right) for n1n \geq 1 , find the limit of the sequence ana _ { n } .

(Multiple Choice)
4.9/5
(42)

Show that the series n=1(1)n14n\sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n - 1 } } { 4 n } is convergent. How many terms of the series do we need to add to find the sum to within 0.01?

(Essay)
4.9/5
(38)

Given that the power series for 11x\frac { 1 } { 1 - x } is n=0xn\sum _ { n = 0 } ^ { \infty } x ^ { n } , find the power series for 1(1x)2\frac { 1 } { ( 1 - x ) ^ { 2 } } in terms of powers of x.

(Essay)
4.8/5
(37)

Find a power series representation for the function f(x)=arctan(3x)f ( x ) = \arctan ( 3 x ) and determine its radius of convergence.

(Essay)
4.9/5
(43)

For which of the following series will the Ratio Test fail to give a definite answer (i.e., be inconclusive)? 1) n=1(99100)n\sum _ { n = 1 } ^ { \infty } \left( \frac { 99 } { 100 } \right) ^ { n } 2) n=1(10099)n\sum _ { n = 1 } ^ { \infty } \left( \frac { 100 } { 99 } \right) ^ { n } 3) n=1n100\sum _ { n = 1 } ^ { \infty } n ^ { - 100 }

(Multiple Choice)
4.8/5
(41)

Find the interval of convergence for k=0(ekk+1)xk\sum _ { k = 0 } ^ { \infty } \left( \frac { e ^ { k } } { k + 1 } \right) x ^ { k } .

(Essay)
4.9/5
(39)

Here is a two-player game: Two players take turns tossing a fair die. The first player to get a 5 wins the game. What is the probability that the player who starts first wins the game?

(Short Answer)
4.7/5
(31)
Showing 281 - 300 of 341
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)