Exam 8: Infinite Sequences and Series

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Approximate the definite integral 01ex2dx\int _ { 0 } ^ { 1 } e ^ { - x ^ { 2 } } d x accurate to six decimal places.

(Short Answer)
4.7/5
(38)

Determine the limit of the sequence an=n+1nn+1+na _ { n } = \frac { \sqrt { n + 1 } - \sqrt { n } } { \sqrt { n + 1 } + \sqrt { n } } .

(Multiple Choice)
4.7/5
(48)

Find the interval of convergence for n=1xn4n2\sum _ { n = 1 } ^ { \infty } \frac { x ^ { n } } { 4 n ^ { 2 } } .

(Essay)
4.8/5
(40)

Which of the following series is absolutely convergent? 1) n=1(1)nn2\sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n } } { n ^ { 2 } } 2) n=1(1)nn\sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n } } { n } 3) n=11n3\sum _ { n = 1 } ^ { \infty } \frac { 1 } { n ^ { 3 } }

(Multiple Choice)
4.9/5
(39)

Use the binomial series to expand (4+x)3/2( 4 + x ) ^ { 3 / 2 } as a power series. State the radius of convergence.

(Essay)
4.8/5
(48)

Find the sum of the series n=11n(n+2)\sum _ { n = 1 } ^ { \infty } \frac { 1 } { n ( n + 2 ) } .

(Multiple Choice)
4.8/5
(36)

Determine whether the series n=2lnn2(n+1)(n1)\sum _ { n = 2 } ^ { \infty } \ln \frac { n ^ { 2 } } { ( n + 1 ) ( n - 1 ) } is convergent or divergent. If it is convergent, find the sum.

(Short Answer)
4.8/5
(29)

Write the Taylor polynomial at 0 of degree 4 for f(x)=ln(1+x)f ( x ) = \ln ( 1 + x ) .

(Essay)
4.9/5
(34)

Which of the following is the power series centered at a=0a = 0 for f(x)=x1+4xf ( x ) = \frac { x } { 1 + 4 x } ? 1) n=0(1)n4nxn\sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } 4 ^ { n } x ^ { n } 2) n=04nxn+1\sum _ { n = 0 } ^ { \infty } 4 ^ { n } x ^ { n + 1 } 3) n=0(1)n4nxn+1\sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } 4 ^ { n } x ^ { n + 1 }

(Multiple Choice)
4.9/5
(36)

Determine whether the series n=1(0.9999)n\sum _ { n = 1 } ^ { \infty } ( 0.9999 ) ^ { n } is convergent or divergent. If it is convergent, find the sum.

(Short Answer)
4.9/5
(30)

Use the binomial series to expand 12+x\frac { 1 } { \sqrt { 2 + x } } as a power series. State the radius of convergence.

(Essay)
4.8/5
(33)

Find the terms of the Maclaurin series for f(x)=11+2xf ( x ) = \frac { 1 } { \sqrt { 1 + 2 x } } , as far as the term in x3x ^ { 3 } .

(Multiple Choice)
4.9/5
(40)

Show that the series n=1(1)n13n+1\sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n - 1 } } { 3 n + 1 } is convergent. How many terms of the series do we need to add to find the sum to within 0.01?

(Essay)
4.9/5
(40)

Express the number 1.363636... as a ratio of integers.

(Multiple Choice)
4.9/5
(39)

Show that if n=1an\sum _ { n = 1 } ^ { \infty } a _ { n } converges, then n=1cos(an)\sum _ { n = 1 } ^ { \infty } \cos \left( a _ { n } \right) diverges.

(Essay)
4.8/5
(40)

Evaluate limn(12n)n\lim _ { n \rightarrow \infty } \left( 1 - \frac { 2 } { n } \right) ^ { n } .

(Short Answer)
4.9/5
(30)

Find the radius of convergence of n=03xn\sum _ { n = 0 } ^ { \infty } 3 x ^ { n } .

(Multiple Choice)
4.9/5
(32)

Consider the sequence defined by an=n!258(3n1),n1a _ { n } = \frac { n ! } { 2 \cdot 5 \cdot 8 \cdots ( 3 n - 1 ) } , n \geq 1 (a) Evaluate the first three terms of this sequence.(b) Find the limit.

(Essay)
4.8/5
(40)

Which of the following series are convergent, but not absolutely convergent? 1) n=1(1)nn3\sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n } } { \sqrt [ 3 ] { n } } 2) n=1(1)n1nlnn\sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n - 1 } } { \sqrt { n } \ln n } 3) n=1cosn2n\sum _ { n = 1 } ^ { \infty } \frac { \cos n } { 2 ^ { n } }

(Multiple Choice)
4.8/5
(31)

Approximate the definite integral 00.11x5+1dx\int _ { 0 } ^ { 0.1 } \frac { 1 } { x ^ { 5 } + 1 } d x accurate to six decimal places.

(Short Answer)
4.8/5
(36)
Showing 321 - 340 of 341
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)