Exam 8: Infinite Sequences and Series

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Which of the following is the degree 3 Taylor polynomial centered at a=0a = 0 for f(x)=1cosxxf ( x ) = \frac { 1 - \cos x } { x } ? 1) x2x324\frac { x } { 2 } - \frac { x ^ { 3 } } { 24 } 2) x2+x324- \frac { x } { 2 } + \frac { x ^ { 3 } } { 24 } 3) xx3x - x ^ { 3 }

(Multiple Choice)
4.9/5
(36)

Which one of the following series diverges?

(Multiple Choice)
4.7/5
(34)

Find the coefficient of xx in the binomial series for 1+x\sqrt { 1 + x } .

(Multiple Choice)
4.9/5
(28)

Which of the following series converges? 1) n=1nln(n+1)\sum _ { n = 1 } ^ { \infty } \frac { n } { \ln ( n + 1 ) } 2) n=11[ln(n+1)]2\sum _ { n = 1 } ^ { \infty } \frac { 1 } { [ \ln ( n + 1 ) ] ^ { 2 } } 3) n=11[ln(n+1)]3\sum _ { n = 1 } ^ { \infty } \frac { 1 } { [ \ln ( n + 1 ) ] ^ { 3 } }

(Multiple Choice)
4.8/5
(41)

Determine whether the series n=13+(1)n3n\sum _ { n = 1 } ^ { \infty } \frac { 3 + ( - 1 ) ^ { n } } { 3 ^ { n } } is convergent or divergent. If it is convergent, find the sum.

(Short Answer)
4.9/5
(42)

Use the binomial series to expand x21x3\frac { x ^ { 2 } } { \sqrt { 1 - x ^ { 3 } } } as a power series. State the radius of convergence.

(Essay)
4.9/5
(32)

Find a formula for the general term ana _ { n } of the sequence {12,0,110,217,326,}\left\{ - \frac { 1 } { 2 } , 0 , \frac { 1 } { 10 } , \frac { 2 } { 17 } , \frac { 3 } { 26 } , \ldots \right\} .

(Multiple Choice)
4.9/5
(36)

Determine whether an=ncosnn2+1a _ { n } = \frac { n \cos n } { n ^ { 2 } + 1 } converges or diverges. If it converges, find the limit.

(Short Answer)
5.0/5
(38)

Find the sum of the series n=0(1)nπ2n+132n(2n+1)!\sum _ { n = 0 } ^ { \infty } \frac { ( - 1 ) ^ { n } \pi ^ { 2 n + 1 } } { 3 ^ { 2 n } ( 2 n + 1 ) ! } .

(Short Answer)
4.8/5
(23)

Determine whether each of the following series is convergent or divergent.(a) n=11n\sum _ { n = 1 } ^ { \infty } \frac { 1 } { n } (b) n=0nsin(1n)\sum _ { n = 0 } ^ { \infty } n \sin \left( \frac { 1 } { n } \right) (c) n=0(1)n3n5n\sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } \frac { 3 ^ { n } } { 5 ^ { n } }

(Short Answer)
4.7/5
(34)

According to Taylor's Formula, what is the maximum error possible in the use of the sum n=04xnn!\sum _ { n = 0 } ^ { 4 } \frac { x ^ { n } } { n ! } to approximate exe ^ { x } in the interval 1x1- 1 \leq x \leq 1 ?

(Multiple Choice)
4.7/5
(33)

Find the limit of the sequence {3,33,333,}\{ \sqrt { 3 } , \sqrt { 3 \sqrt { 3 } } , \sqrt { 3 \sqrt { 3 \sqrt { 3 } } } , \ldots \} .

(Multiple Choice)
4.9/5
(48)

Express the number 0.2150.2 \overline { 15 } as a ratio of integers.

(Short Answer)
4.7/5
(34)

Determine whether the series n=1cos(π2n21)\sum _ { n = 1 } ^ { \infty } \cos \left( \frac { \pi } { 2 n ^ { 2 } - 1 } \right) is convergent or divergent. If it is convergent, find the sum.

(Short Answer)
4.8/5
(32)

Which of the following series converges? 1) n=132n23n\sum _ { n = 1 } ^ { \infty } \frac { 3 ^ { 2 n } } { 2 ^ { 3 n } } 2) n=11(n+1)3\sum _ { n = 1 } ^ { \infty } \frac { 1 } { ( n + 1 ) ^ { 3 } } 3) n=1n+1n3+2\sum _ { n = 1 } ^ { \infty } \frac { n + 1 } { \sqrt { n ^ { 3 } + 2 } }

(Multiple Choice)
4.7/5
(40)

Estimate the range of values of x for which the approximation 1x=1(x1)+(x1)2\frac { 1 } { x } = 1 - ( x - 1 ) + ( x - 1 ) ^ { 2 } is accurate to within 0.01.

(Multiple Choice)
4.7/5
(37)

(a) Find the third-order Taylor polynomial associated with f(x)=sin1x at a=0f ( x ) = \sin ^ { - 1 } x \text { at } a = 0 .(b) Use the Taylor polynomial from part (a) to find an approximation of sin10.2\sin ^ { - 1 } 0.2 .(c) Compare the value you calculated in part (b) with your calculator's value for sin10.2\sin ^ { - 1 } 0.2

(Essay)
4.9/5
(45)

Which one of the following series diverges?

(Multiple Choice)
4.8/5
(40)

Find the sum of the series n=1n3n4n\sum _ { n = 1 } ^ { \infty } \frac { n 3 ^ { n } } { 4 ^ { n } } .

(Short Answer)
4.8/5
(39)

Consider the series n=1(1)n112n1\sum _ { n = 1 } ^ { \infty } ( - 1 ) ^ { n - 1 } \frac { 1 } { 2 n - 1 } .(a) Show that the series is convergent, but not absolutely convergent.(b) Calculate the sum of the first 9 terms to approximate the sum of the series.(c) Is the approximation in part (b) an overestimate or an underestimate? (d) Estimate the error involved in the approximation from part (b).

(Essay)
4.8/5
(35)
Showing 61 - 80 of 341
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)