Exam 8: Infinite Sequences and Series

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Test the following series for convergence or divergence: n=1(1)nn2n2+1\sum _ { n = 1 } ^ { \infty } ( - 1 ) ^ { n } \frac { n ^ { 2 } } { n ^ { 2 } + 1 } .

(Short Answer)
4.7/5
(37)

Find a power series representation for ln(1+x2)\ln \left( 1 + x ^ { 2 } \right) .Hint: What is ddxln(1+x2)\frac { d } { d x } \ln \left( 1 + x ^ { 2 } \right) ?

(Essay)
4.8/5
(43)

Which of the following series are convergent, but not absolutely convergent? 1) n=1(e)n\sum _ { n = 1 } ^ { \infty } ( - e ) ^ { - n } 2) n=1(1)nn1\sum _ { n = 1 } ^ { \infty } ( - 1 ) ^ { - n } n ^ { - 1 } 3) n=1(1)nn2\sum _ { n = 1 } ^ { \infty } ( - 1 ) ^ { - n } n ^ { - 2 }

(Multiple Choice)
4.8/5
(41)

Find the sum of the series n=11(5n1)(5n+1)\sum _ { n = 1 } ^ { \infty } \frac { 1 } { ( 5 n - 1 ) ( 5 n + 1 ) } .

(Multiple Choice)
4.9/5
(49)

Given f(x)=tanx and a=0f ( x ) = \tan x \text { and } a = 0 , (a) calculate T1(x;0)T _ { 1 } ( x ; 0 ) .(b) calculate T3(x;0)T _ { 3 } ( x ; 0 ) .(c) calculate T5(x;0)T _ { 5 } ( x ; 0 ) .

(Essay)
4.7/5
(28)

Find the radius of convergence of n=1258(3n1)n!xn\sum _ { n = 1 } ^ { \infty } \frac { 2 \cdot 5 \cdot 8 \cdots ( 3 n - 1 ) } { n ! } x ^ { n } .

(Short Answer)
4.7/5
(35)

Suppose a 600 milligram dose of a drug is injected into a patient and that the patient's kidneys remove 20% of the drug from the bloodstream every hour. Let D(n) denote the amount of the drug left in the patient's body after n hours.(a) Find an expression for D(n).(b) How long will it take for the drug level to drop below 200 milligrams? (c) How long will it take to bring the drug level below 10% of the original dosage?

(Essay)
4.8/5
(41)

Estimate n=11n4+1\sum _ { n = 1 } ^ { \infty } \frac { 1 } { n ^ { 4 } + 1 } to within 0.01.

(Essay)
4.9/5
(34)

Find the radius of convergence of the series n=13n(x2)2n+1n!\sum _ { n = 1 } ^ { \infty } \frac { 3 ^ { n } ( x - 2 ) ^ { 2 n + 1 } } { n ! } .

(Essay)
4.8/5
(46)

Use the binomial series to expand x15\sqrt [ 5 ] { x - 1 } as a power series. State the radius of convergence.

(Essay)
4.9/5
(40)

What is the smallest value of n that will guarantee (according to Taylor's Formula) that the Taylor polynomial TnT _ { n } at the number 0 will be within 0.0001 of exe ^ { x } for 0x10 \leq x \leq 1 ?

(Multiple Choice)
4.7/5
(41)

Test the following series for convergence or divergence: n=1(1)nn+3\sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n } } { \sqrt { n + 3 } } .

(Short Answer)
4.7/5
(37)

Here is a two-player game: Two players take turns flipping a fair coin. The first player to get a head wins the game. What is the probability that the person who starts first wins the game?

(Short Answer)
4.8/5
(38)

Consider the recursive sequence defined by a1=1;an+1=12(an+4),n>1a _ { 1 } = 1 ; a _ { n + 1 } = \frac { 1 } { 2 } \left( a _ { n } + 4 \right) , n > 1 .(a) Evaluate the first four terms of this sequence.(b) Show that the sequence converges.(c) Find the limit.

(Essay)
4.8/5
(39)

Find a power series representation for the function f(x)=xx+5f ( x ) = \frac { x } { x + 5 } and find its interval of convergence.

(Essay)
4.7/5
(35)

If f(x)=ex2f ( x ) = e ^ { x ^ { 2 } } , compute f10(0)f ^ { 10 \rangle } ( 0 ) .

(Essay)
4.8/5
(31)

Find the first four terms in the Maclaurin series for f(x)=xexf ( x ) = x e ^ { - x } .

(Multiple Choice)
4.9/5
(36)

Determine whether the series n=1n3n+2\sum _ { n = 1 } ^ { \infty } \frac { n } { \sqrt { 3 n + 2 } } is convergent or divergent. If it is convergent, find the sum.

(Short Answer)
4.8/5
(40)

Find the Taylor polynomial of degree 4 at 0 for the function defined by f(x)=ln(1+x)f ( x ) = \ln ( 1 + x ) . Then compute the value of ln(1.1)\ln ( 1.1 ) accurate to as many decimal places as the polynomial of degree 4 allows.

(Essay)
4.8/5
(37)

Determine if the series n=1(3n14n+1)n\sum _ { n = 1 } ^ { \infty } \left( \frac { 3 n - 1 } { 4 n + 1 } \right) ^ { n } converges or diverges by the Ratio Test or Root Test.

(Essay)
4.7/5
(32)
Showing 141 - 160 of 341
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)