Exam 8: Infinite Sequences and Series

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

How many coefficients in the binomial series expansion of (1+x)7( 1 + x ) ^ { 7 } are divisible by 7?

(Multiple Choice)
4.8/5
(47)

Use the binomial series to expand 1(1+x)3\frac { 1 } { ( 1 + x ) ^ { 3 } } as a power series. State the radius of convergence.

(Essay)
4.8/5
(46)

Determine whether an=3+(1)nna _ { n } = \frac { 3 + ( - 1 ) ^ { n } } { n } is increasing, decreasing, or not monotonic.

(Short Answer)
4.9/5
(38)

Which of the following is the degree 4 Taylor polynomial centered at a=0a = 0 for f(x)=cos(2x)f ( x ) = \cos ( 2 x ) ? 1) 1(2x)2+16x41 - ( 2 x ) ^ { 2 } + 16 x ^ { 4 } 2) 12x2+23x41 - 2 x ^ { 2 } + \frac { 2 } { 3 } x ^ { 4 } 3) 1(2x)22!+(2x)44!1 - \frac { ( 2 x ) ^ { 2 } } { 2 ! } + \frac { ( 2 x ) ^ { 4 } } { 4 ! }

(Multiple Choice)
4.8/5
(41)

Find the power series for f(x)=5x+7x2+2x3f ( x ) = \frac { 5 x + 7 } { x ^ { 2 } + 2 x - 3 } in terms of powers of x.Hint: Express f(x)f ( x ) in terms of partial fractions.

(Essay)
4.9/5
(35)

Given n=11n3\sum _ { n = 1 } ^ { \infty } \frac { 1 } { n ^ { 3 } } .(a) Approximate the sum of the series n=11n3\sum _ { n = 1 } ^ { \infty } \frac { 1 } { n ^ { 3 } } by using the sum of the first 4 terms.(b) Estimate the error involved in the approximation in part (a).(c) How many terms are required to ensure that the sum is accurate to within 0:001?

(Essay)
4.9/5
(39)

Which one of the following series converges?

(Multiple Choice)
4.7/5
(39)

Which of the following is the degree 3 Taylor polynomial centered at a=0a = 0 for f(x)=cos(2x)f ( x ) = \cos ( 2 x ) ? 1) 1(2x)2+16x41 - ( 2 x ) ^ { 2 } + 16 x ^ { 4 } 2) 12x2+83x41 - 2 x ^ { 2 } + \frac { 8 } { 3 } x ^ { 4 } 3) 1(2x)22!1 - \frac { ( 2 x ) ^ { 2 } } { 2 ! }

(Multiple Choice)
4.9/5
(39)

Find the radius of convergence of n=1n258(3n1)xn\sum _ { n = 1 } ^ { \infty } \frac { n } { 2 \cdot 5 \cdot 8 \cdots \cdot ( 3 n - 1 ) } x ^ { n } .

(Short Answer)
4.9/5
(33)

Find the interval of convergence of n=1(1)n(x+2)nn3n\sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n } ( x + 2 ) ^ { n } } { \sqrt { n } 3 ^ { n } } .

(Multiple Choice)
4.9/5
(44)

Determine whether the series n=01+sin2n5n\sum _ { n = 0 } ^ { \infty } \frac { 1 + \sin ^ { 2 } n } { 5 ^ { n } } converges.

(Short Answer)
4.7/5
(31)

Which of the following series can be shown to be convergent using the Ratio Test? 1) n=11n2\sum _ { n = 1 } ^ { \infty } \frac { 1 } { n ^ { 2 } } 2) n=1n3n\sum _ { n = 1 } ^ { \infty } \frac { n } { 3 ^ { n } } 3) n=12nn!\sum _ { n = 1 } ^ { \infty } \frac { 2 ^ { n } } { n ! }

(Multiple Choice)
4.8/5
(31)

Determine if the series n=2(nlnn)n\sum _ { n = 2 } ^ { \infty } \left( \frac { n } { \ln n } \right) ^ { n } converges or diverges by the Ratio Test or Root Test.

(Essay)
4.8/5
(35)

Consider the recursive sequence defined by a1=2;an+1=23an,n>1a _ { 1 } = 2 ; a _ { n + 1 } = \frac { 2 } { 3 - a _ { n } } , n > 1 .(a) Evaluate the first four terms of this sequence.(b) Show that the sequence converges.(c) Find the limit.

(Essay)
4.9/5
(41)

Find a formula for the general term ana _ { n } of the sequence {2,1,89,1,3225,6436,12849,}\left\{ 2,1 , \frac { 8 } { 9 } , 1 , \frac { 32 } { 25 } , \frac { 64 } { 36 } , \frac { 128 } { 49 } , \ldots \right\} .

(Multiple Choice)
4.8/5
(41)

How many terms of the alternating series n=1(1)n+1n2\sum _ { n = 1 } ^ { \infty } ( - 1 ) ^ { n + 1 } n ^ { - 2 } must we add in order to be sure that the partial sum SnS _ { n } is within 0.0001 of the sum SS ?

(Multiple Choice)
4.8/5
(35)

Determine whether the series n=1(1.0001)n\sum _ { n = 1 } ^ { \infty } ( 1.0001 ) ^ { n } is convergent or divergent. If it is convergent, find the sum.

(Short Answer)
4.9/5
(33)

Find the radius of convergence of the series n=1nn(x+1)n3n\sum _ { n = 1 } ^ { \infty } \frac { n ^ { n } ( x + 1 ) ^ { n } } { 3 ^ { n } } .

(Multiple Choice)
4.7/5
(36)

Which of the following series will, when rearranged, converge to different values? 1) n=1n1\sum _ { n = 1 } ^ { \infty } n ^ { - 1 } 2) n=1(1)n1n1\sum _ { n = 1 } ^ { \infty } ( - 1 ) ^ { n - 1 } n ^ { - 1 } 3) n=1(1)n1n2\sum _ { n = 1 } ^ { \infty } ( - 1 ) ^ { n - 1 } n ^ { - 2 }

(Multiple Choice)
4.8/5
(35)

Find the interval of convergence of n=0(3x)n3n+1\sum _ { n = 0 } ^ { \infty } \frac { ( - 3 x ) ^ { n } } { 3 n + 1 } .

(Multiple Choice)
4.7/5
(39)
Showing 101 - 120 of 341
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)