Exam 15: Partial Derivatives

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Estimate the error in the quadratic approximation of the given function at the origin over the given region. - f(x,y)=ln(1+3x+4y),x0.1,y0.1f ( x , y ) = \ln ( 1 + 3 x + 4 y ) , \quad | x | \leq 0.1 , | y | \leq 0.1

(Multiple Choice)
4.8/5
(33)

Find all the local maxima, local minima, and saddle points of the function. - f(x,y)=x2+7xy+y2f ( x , y ) = x ^ { 2 } + 7 x y + y ^ { 2 }

(Multiple Choice)
4.9/5
(37)

Solve the problem. -Find an equation for the level curve of the function f(x,y)=x2+y2f ( x , y ) = \sqrt { x ^ { 2 } + y ^ { 2 } } that passes through the point (3,4)( 3,4 ) .

(Multiple Choice)
4.9/5
(36)

Find the derivative of the function at P0 in the direction of u. - f(x,y,z)=ln(x2+9y27z2),P0(9,9,9),u=3i+4jf ( x , y , z ) = \ln \left( x ^ { 2 } + 9 y ^ { 2 } - 7 z ^ { 2 } \right) , \quad P _ { 0 } ( 9,9,9 ) , \quad \mathbf { u } = 3 \mathbf { i } + 4 \mathbf { j }

(Multiple Choice)
4.9/5
(38)

Solve the problem. -  Evaluate wu at (u,v)=(4,2) for the function w=xz+yzz2;x=uv,y=uv,z=u\text { Evaluate } \frac { \partial \mathrm { w } } { \partial \mathrm { u } } \text { at } ( \mathrm { u } , \mathrm { v } ) = ( 4,2 ) \text { for the function } \mathrm { w } = \mathrm { xz } + \mathrm { yz } - \mathrm { z } ^ { 2 } ; \mathrm { x } = \mathrm { uv } , \mathrm { y } = \mathrm { uv } , \mathrm { z } = \mathrm { u }

(Multiple Choice)
4.8/5
(32)

Find all the local maxima, local minima, and saddle points of the function. - f(x,y)=x3+y3243x48y5f ( x , y ) = x ^ { 3 } + y ^ { 3 } - 243 x - 48 y - 5

(Multiple Choice)
4.9/5
(35)

Use the limit definition of the partial derivative to compute the indicated partial derivative of the function at the specified point. -  Find fz at the point (6,5,5):f(x,y,z)=xyz10y27z\text { Find } \frac { \partial f } { \partial z } \text { at the point } ( 6 , - 5,5 ) : f ( x , y , z ) = x y z - 10 y ^ { 2 } - 7 z

(Essay)
4.8/5
(41)

At what points is the given function continuous? - f(x,y,z)=1x3+y4+z5f ( x , y , z ) = \frac { 1 } { | x - 3 | + | y - 4 | + | z - 5 | }

(Multiple Choice)
4.9/5
(39)

Estimate the error in the quadratic approximation of the given function at the origin over the given region. - f(x,y)=sin5xsin2y,x0.1,y0.1f ( x , y ) = \sin 5 x \sin 2 y , | x | \leq 0.1 , | y | \leq 0.1

(Multiple Choice)
4.8/5
(33)
Showing 401 - 409 of 409
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)