Exam 15: Partial Derivatives

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Use implicit differentiation to find the specified derivative at the given point. -Find yx\frac { \partial y } { \partial x } at the point (1,4,e7)\left( 1,4 , e ^ { 7 } \right) for ln(xz)y+6y3=0\ln ( x z ) y + 6 y ^ { 3 } = 0 .

(Multiple Choice)
4.9/5
(37)

Find the equation for the level surface of the function through the given point. - f(x,y,z)=yz(lnθ+1)dθ+0xtetdt,(4,e3,e5)f ( x , y , z ) = \int _ { y } ^ { z } ( \ln \theta + 1 ) d \theta + \int _ { 0 } ^ { x } t e ^ { t } d t , \left( 4 , e ^ { 3 } , e ^ { - 5 } \right)

(Multiple Choice)
4.8/5
(33)

Use polar coordinates to find the limit of the function as (x, y) approaches (0, 0). - f(x,y)=x+yx+yf ( x , y ) = \frac { x + y } { \sqrt { x + y } }

(Multiple Choice)
4.8/5
(44)

Give an appropriate answer. -Given the function f(x,y,z)f ( x , y , z ) and the positive number ε\varepsilon as in the formal definition of a limit, find a positive number δ\delta as in the definition that insures f(x,y,z)f(0,0,0)<ε| f ( x , y , z ) - f ( 0,0,0 ) | < \varepsilon . f(x,y,z)=x2+y2+z2x+1;ε=0.03f ( x , y , z ) = \frac { \sqrt { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } } { x + 1 } ; \varepsilon = 0.03

(Essay)
4.9/5
(39)

Write a chain rule formula for the following derivative. - wt for w=f(x,y,z);x=g(r,s),y=h(t),z=k(r,s,t)\frac { \partial w } { \partial t } \text { for } w = f ( x , y , z ) ; x = g ( r , s ) , y = h ( t ) , z = k ( r , s , t )

(Multiple Choice)
4.9/5
(36)

Solve the problem. -Solve the problem. -

(Multiple Choice)
4.9/5
(38)

Solve the problem. -Find the derivative of the function f(x,y)=x2+xy+y2f ( x , y ) = x ^ { 2 } + x y + y ^ { 2 } at the point (3,4)( 3,4 ) in the direction in which the function decreases most rapidly.

(Multiple Choice)
4.8/5
(41)

Find the limit. - limP(1,1,8)sec2xtan2y+z\lim _ { P \rightarrow ( 1,1,8 ) } \sec ^ { 2 } x - \tan ^ { 2 } y + z

(Multiple Choice)
4.9/5
(38)

Sketch the surface z = f(x,y). - f(x,y)=3x2f ( x , y ) = 3 - x ^ { 2 }

(Multiple Choice)
4.8/5
(36)

Solve the problem. -Find an equation for the level surface of the function f(x,y,z)=n=0(1)n(x+y)2n(2n)!z2nf ( x , y , z ) = \sum _ { n = 0 } ^ { \infty } \frac { ( - 1 ) ^ { n } ( x + y ) ^ { 2 n } } { ( 2 n ) ! z ^ { 2 n } } that passes through the point (π,π,1)( \pi , \pi , 1 ) .

(Multiple Choice)
4.8/5
(33)

Find an upper bound for the magnitude |E| of the error in the approximation f(x, y) ≈ L(x, y) at the given point over the given region R. - f(x,y,z)=e9x+7y+5z at (0,0,0);R:x0.1,y0.1,z0.1f ( x , y , z ) = e ^ { 9 x + 7 y + 5 z } \text { at } ( 0,0,0 ) ; R : | x | \leq 0.1 , | y | \leq 0.1 , | z | \leq 0.1

(Multiple Choice)
4.8/5
(36)

Find two paths of approach from which one can conclude that the function has no limit as (x, y) approaches (0, 0). -  Show that f(x,y,z)=x2y5z5 is continuous at every point (x0,y0,z0)\text { Show that } f ( x , y , z ) = x ^ { 2 } y ^ { 5 } z ^ { 5 } \text { is continuous at every point } \left( x _ { 0 } , y _ { 0 } , z _ { 0 } \right) \text {. }

(Essay)
4.9/5
(39)

Use Taylor's formula to find the requested approximation of f(x, y) near the origin. -Quadratic approximation to f(x, y) = ln(1 + 10x + y)

(Multiple Choice)
4.7/5
(29)

Solve the problem. -Find the point on the sphere x2+y2+z2=4x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 4 that is farthest from the point (3,1,1)( 3,1 , - 1 ) .

(Multiple Choice)
4.9/5
(32)

Compute the gradient of the function at the given point. - f(x,y,z)=7x7y6z,(3,8,5)f ( x , y , z ) = - 7 x - 7 y - 6 z , \quad ( 3 , - 8,5 )

(Multiple Choice)
4.9/5
(37)

Use implicit differentiation to find the specified derivative at the given point. -Find dydx\frac { d y } { d x } at the point (1,0)( 1,0 ) for cosxy+yex=0\cos x y + y e ^ { x } = 0 .

(Multiple Choice)
4.7/5
(40)

Show that the function is a solution of the wave equation. -w(x, t) = cos ( ct) sin ( x)

(True/False)
4.8/5
(31)

Find the limit. -Find the limit. -

(Multiple Choice)
4.9/5
(39)

Write a chain rule formula for the following derivative. - wt for w=f(x,y,z);x=g(r,s,t),y=h(r,s,t),z=k(r,s,t)\frac { \partial \mathrm { w } } { \partial \mathrm { t } } \text { for } \mathrm { w } = \mathrm { f } ( \mathrm { x } , \mathrm { y } , \mathrm { z } ) ; \mathrm { x } = \mathrm { g } ( \mathrm { r } , \mathrm { s } , \mathrm { t } ) , \mathrm { y } = \mathrm { h } ( \mathrm { r } , \mathrm { s } , \mathrm { t } ) , \mathrm { z } = \mathrm { k } ( \mathrm { r } , \mathrm { s } , \mathrm { t } )

(Multiple Choice)
4.8/5
(33)

Solve the problem. -If the length, width, and height of a rectangular solid are measured to be 5, 2, and 9 inches respectively and each measurement is accurate to within 0.1 inch, estimate the maximum possible error in computing the volume of The solid.

(Multiple Choice)
4.8/5
(40)
Showing 201 - 220 of 409
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)