Exam 15: Partial Derivatives

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find all the second order partial derivatives of the given function. - f(x,y)=xx+yf ( x , y ) = \frac { x } { x + y }

(Multiple Choice)
4.9/5
(35)

Use Taylor's formula to find the requested approximation of f(x, y) near the origin. -Cubic approximation to f(x, y) = sin(6x + y)

(Multiple Choice)
4.9/5
(36)

Solve the problem. -  Find the equation for the tangent plane to the surface z=7x2+9y2 at the point (2,1,37)\text { Find the equation for the tangent plane to the surface } z = 7 x ^ { 2 } + 9 y ^ { 2 } \text { at the point } ( 2,1,37 ) \text {. }

(Multiple Choice)
4.8/5
(32)

Find the limit. - (x,y)(π4,1)ytanxy+1( x , y ) - \left( \frac { \pi } { 4 } , 1 \right) ^ { \frac { y \tan x } { y + 1 } }

(Multiple Choice)
4.8/5
(44)

Find the absolute maximum and minimum values of the function on the given curve. -  Function: f(x,y)=x2+y2; curve: x=5t+1,y=5t1,0t1\text { Function: } f ( x , y ) = x ^ { 2 } + y ^ { 2 } ; \text { curve: } x = 5 t + 1 , y = 5 t - 1,0 \leq t \leq 1 \text {. }

(Multiple Choice)
4.9/5
(38)

Find the requested partial derivative. - wx\frac { \partial w } { \partial x } if w=x3+y3+z3+15xyzw = x ^ { 3 } + y ^ { 3 } + z ^ { 3 } + 15 x y z and (yx)2+(zx)2=0\left( \frac { \partial y } { \partial x } \right) ^ { 2 } + \left( \frac { \partial z } { \partial x } \right) ^ { 2 } = 0 .

(Multiple Choice)
4.9/5
(34)

Write a chain rule formula for the following derivative. - ur for u=f(x);x=g(p,q,r)\frac { \partial \mathrm { u } } { \partial \mathrm { r } } \text { for } \mathrm { u } = \mathrm { f } ( \mathrm { x } ) ; \mathrm { x } = \mathrm { g } ( \mathrm { p } , \mathrm { q } , \mathrm { r } )

(Multiple Choice)
4.9/5
(39)

At what points is the given function continuous? - f(x,y,z)=exey+zf ( x , y , z ) = \frac { e ^ { x } } { e ^ { y + z } }

(Multiple Choice)
4.8/5
(43)

Use the limit definition of the partial derivative to compute the indicated partial derivative of the function at the specified point. -  Find fx at the point (10,5):f(x,y)=5x2+4xy+3y2\text { Find } \frac { \partial f } { \partial x } \text { at the point } ( 10 , - 5 ) : f ( x , y ) = 5 x ^ { 2 } + 4 x y + 3 y ^ { 2 }

(Essay)
4.8/5
(29)

Find the limit. - lim(x,y)(1,1)lnx+yxy\lim _ { ( x , y ) \rightarrow ( 1,1 ) } \ln \left| \frac { x + y } { x y } \right|

(Multiple Choice)
4.9/5
(38)

Compute the gradient of the function at the given point. - f(x,y,z)=ln(x2+5y27z2),(5,5,5)f ( x , y , z ) = \ln \left( x ^ { 2 } + 5 y ^ { 2 } - 7 z ^ { 2 } \right) , \quad ( 5,5,5 )

(Multiple Choice)
4.7/5
(38)

Use the limit definition of the partial derivative to compute the indicated partial derivative of the function at the specified point. -  Find fy at the point (10,9) : f(x,y)=5x2+7xy+7y2\text { Find } \frac { \partial f } { \partial y } \text { at the point } ( - 10,9 ) \text { : } f ( x , y ) = 5 x ^ { 2 } + 7 x y + 7 y ^ { 2 }

(Essay)
4.8/5
(30)

Provide an appropriate response. -Which order of differentiation will calculate fxyf _ { x y } faster, xx first or yy first? f(x,y)=yln(x)3sin(x)f ( x , y ) = y \ln ( x ) - 3 \sin ( x )

(Multiple Choice)
4.7/5
(33)

Find all the second order partial derivatives of the given function. - f(x,y)=xy2+yex2+5\mathrm { f } ( \mathrm { x } , \mathrm { y } ) = x \mathrm { y } ^ { 2 } + y \mathrm { e } ^ { \mathrm { x } ^ { 2 } + 5 }

(Multiple Choice)
4.7/5
(38)

Find an upper bound for the magnitude |E| of the error in the approximation f(x, y) ≈ L(x, y) at the given point over the given region R. - f(x,y)=ln(8x+7y)f ( x , y ) = \ln ( 8 x + 7 y ) at (1,1);R:x10.1,y10.1( 1,1 ) ; R : | x - 1 | \leq 0.1 , | y - 1 | \leq 0.1

(Multiple Choice)
4.7/5
(40)

Find two paths of approach from which one can conclude that the function has no limit as (x, y) approaches (0, 0). -  Define f(0,0) in a way that extends f(x,y)=6x2x2y+6y2x2+y2 to be continuous at the origin. \text { Define } f ( 0,0 ) \text { in a way that extends } f ( x , y ) = \frac { 6 x ^ { 2 } - x ^ { 2 } y + 6 y ^ { 2 } } { x ^ { 2 } + y ^ { 2 } } \text { to be continuous at the origin. }

(Multiple Choice)
4.8/5
(32)

Solve the problem. -Find the point on the sphere x2+y2+z2=4x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 4 that is closest to the point (3,1,1)( 3,1 , - 1 ) .

(Multiple Choice)
4.8/5
(41)

Find all the local maxima, local minima, and saddle points of the function. - f(x,y)=2xy5x+3yf ( x , y ) = 2 x y - 5 x + 3 y

(Multiple Choice)
4.9/5
(41)

Solve the problem. -Find the derivative of the function f(x,y,z)=xy+yz+zxf ( x , y , z ) = \frac { x } { y } + \frac { y } { z } + \frac { z } { x } at the point (7,7,7)( - 7,7 , - 7 ) in the direction in which the function increases most rapidly.

(Multiple Choice)
4.8/5
(35)

Solve the problem. -  Find parametric equations for the normal line to the surface z=e8x2+10y2 at the point (0,0,1)\text { Find parametric equations for the normal line to the surface } \mathrm { z } = \mathrm { e } ^ { 8 \mathrm { x } ^ { 2 } + 10 \mathrm { y } ^ { 2 } } \text { at the point } ( 0,0,1 ) \text {. }

(Multiple Choice)
4.9/5
(34)
Showing 61 - 80 of 409
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)