Exam 15: Partial Derivatives

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Provide an appropriate response. -  Determine the point on the paraboloid z=9x2+2y2 that is closest to the point (57,10,88)\text { Determine the point on the paraboloid } z = 9 x ^ { 2 } + 2 y ^ { 2 } \text { that is closest to the point } ( 57 , - 10,88 ) \text {. }

(Multiple Choice)
4.9/5
(35)

Find an upper bound for the magnitude |E| of the error in the approximation f(x, y) ≈ L(x, y) at the given point over the given region R. - f(x,y,z)=tan1xyzf ( x , y , z ) = \tan ^ { - 1 } x y z at (7,7,7);R:x70.2,y70.2,z70.2( 7,7,7 ) ; R : | x - 7 | \leq 0.2 , | y - 7 | \leq 0.2 , | z - 7 | \leq 0.2

(Multiple Choice)
4.9/5
(44)

Use the limit definition of the partial derivative to compute the indicated partial derivative of the function at the specified point. -  Find fy at the point (10,1):f(x,y)=910xy+3xy2\text { Find } \frac { \partial f } { \partial y } \text { at the point } ( - 10,1 ) : f ( x , y ) = 9 - 10 x y + 3 x y ^ { 2 }

(Essay)
4.9/5
(38)

Use the limit definition of the partial derivative to compute the indicated partial derivative of the function at the specified point. -  Find fx at the point (4,4):f(x,y)=38xy+8xy2\text { Find } \frac { \partial f } { \partial x } \text { at the point } ( 4 , - 4 ) : f ( x , y ) = 3 - 8 x y + 8 x y ^ { 2 }

(Essay)
4.8/5
(41)

Find the derivative of the function at P0 in the direction of u. - f(x,y,z)=4x+8y7z,P0(7,10,10),u=3i6j2kf ( x , y , z ) = 4 x + 8 y - 7 z , \quad P _ { 0 } ( - 7,10 , - 10 ) , \quad \mathbf { u } = 3 \mathbf { i } - 6 \mathbf { j } - 2 \mathbf { k }

(Multiple Choice)
5.0/5
(43)

Provide an appropriate response. -Which order of differentiation will calculate fxy\mathrm { f } _ { \mathrm { xy } } faster, xx first or y\mathrm { y } first? f(x,y)=1g(y),g(y)0f ( x , y ) = \frac { 1 } { g ( y ) } , g ( y ) \neq 0

(Multiple Choice)
4.8/5
(34)

Answer the question. -The graph below shows the level curves of a differentiable function f(x,y)f ( x , y ) (thin curves) as well as the constraint g(x,y)=x2+y232=0g ( x , y ) = \sqrt { x ^ { 2 } + y ^ { 2 } } - \frac { 3 } { 2 } = 0 (thick circle). Using the concepts of the orthogonal gradient theorem and the method of Lagrange multipliers, estimate the coordinates corresponding to the constrained extrema of f(x,y)f ( x , y ) .  Answer the question. -The graph below shows the level curves of a differentiable function  f ( x , y )  (thin curves) as well as the constraint  g ( x , y ) = \sqrt { x ^ { 2 } + y ^ { 2 } } - \frac { 3 } { 2 } = 0  (thick circle). Using the concepts of the orthogonal gradient theorem and the method of Lagrange multipliers, estimate the coordinates corresponding to the constrained extrema of  f ( x , y ) .

(Multiple Choice)
4.8/5
(33)

Find the limit. - lim(x,y)(11,13)1xy\lim _ { ( x , y ) \rightarrow ( 11,13 ) } \sqrt { \frac { 1 } { x y } }

(Multiple Choice)
4.8/5
(45)

Find two paths of approach from which one can conclude that the function has no limit as (x, y) approaches (0, 0). -  Show that f(x,y,z)=ex2+y2+z2 is continuous at the origin. \text { Show that } f ( x , y , z ) = e ^ { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } \text { is continuous at the origin. }

(Essay)
4.8/5
(36)

Solve the problem. -  Find parametric equations for the normal line to the surface z=4x22y2 at the point (2,1,14)\text { Find parametric equations for the normal line to the surface } z = 4 x ^ { 2 } - 2 y ^ { 2 } \text { at the point } ( 2,1,14 ) \text {. }

(Multiple Choice)
4.9/5
(40)

Find the limit. -Find the limit. -

(Multiple Choice)
4.8/5
(31)

Find the extreme values of the function subject to the given constraint. - f(x,y,z)=(x2)2+(y+1)2+(z4)2,xy+3z=7f ( x , y , z ) = ( x - 2 ) ^ { 2 } + ( y + 1 ) ^ { 2 } + ( z - 4 ) ^ { 2 } , x - y + 3 z = 7

(Multiple Choice)
4.7/5
(33)

Find the absolute maxima and minima of the function on the given domain. - f(x,y)=x2+xy+y2 on the square 8x,y8f ( x , y ) = x ^ { 2 } + x y + y ^ { 2 } \text { on the square } - 8 \leq x , y \leq 8

(Multiple Choice)
5.0/5
(39)

Solve the problem. -  Evaluate dwdt at t=12π for the function w=x2y23x;x=cost,y=sint\text { Evaluate } \frac { d w } { d t } \text { at } t = \frac { 1 } { 2 } \pi \text { for the function } w = x ^ { 2 } - y ^ { 2 } - 3 x ; x = \operatorname { cost } , y = \sin t

(Multiple Choice)
4.8/5
(35)

Match the surface show below to the graph of its level curves. -Match the surface show below to the graph of its level curves. -

(Multiple Choice)
4.8/5
(38)

Find the limit. - lim(x,y)(1,4)(5x4y)\lim _ { ( x , y ) \rightarrow ( 1,4 ) } \left( \frac { 5 } { x } - \frac { 4 } { y } \right)

(Multiple Choice)
4.9/5
(35)

Solve the problem. -Write an equation for the tangent line to the curve y2x=4y ^ { 2 } - x = 4 at the point (1,5)( 1 , \sqrt { 5 } ) .

(Multiple Choice)
4.8/5
(38)

Use Taylor's formula to find the requested approximation of f(x, y) near the origin. -Quadratic approximation to f(x,y)=ex+3y\mathrm { f } ( \mathrm { x } , \mathrm { y } ) = \mathrm { e } ^ { \mathrm { x } + 3 \mathrm { y } }

(Multiple Choice)
4.8/5
(42)

Find the extreme values of the function subject to the given constraint. - f(x,y,z)=x2+y2+z2,x+2y+3z=6f ( x , y , z ) = x ^ { 2 } + y ^ { 2 } + z ^ { 2 } , x + 2 y + 3 z = 6

(Multiple Choice)
4.8/5
(37)

Find the requested partial derivative. - (w/y)x if w=4x+5y+6z and x+y=z( \partial w / \partial y ) _ { x } \text { if } w = 4 x + 5 y + 6 z \text { and } x + y = z

(Multiple Choice)
4.9/5
(30)
Showing 221 - 240 of 409
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)