Exam 15: Partial Derivatives

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Solve the problem. -Find an equation for the level surface of the function f(x,y,z)=x2+y2+z2f ( x , y , z ) = \sqrt { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } that passes through the point (3,12,4)( 3,12,4 ) .

(Multiple Choice)
4.8/5
(29)

Sketch the surface z = f(x,y). - f(x,y)=1xf ( x , y ) = 1 - | x |

(Multiple Choice)
4.9/5
(36)

Solve the problem. -Write parametric equations for the tangent line to the curve of intersection of the surfaces x=y2x = y ^ { 2 } and y=5z2y = 5 z ^ { 2 } at the point (25,5,1)( 25,5,1 ) .

(Multiple Choice)
4.7/5
(31)

Find the extreme values of the function subject to the given constraint. - f(x,y,z)=x3+y3+z3,x2+y2+z2=4f ( x , y , z ) = x ^ { 3 } + y ^ { 3 } + z ^ { 3 } , x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 4

(Multiple Choice)
4.8/5
(35)

Find the extreme values of the function subject to the given constraint. - f(x,y)=x2+4y3,x2+2y2=2f ( x , y ) = x ^ { 2 } + 4 y ^ { 3 } , x ^ { 2 } + 2 y ^ { 2 } = 2

(Multiple Choice)
4.8/5
(37)

Use Taylor's formula to find the requested approximation of f(x, y) near the origin. -Cubic approximation to f(x,y)=11+4x+y\mathrm { f } ( \mathrm { x } , \mathrm { y } ) = \frac { 1 } { 1 + 4 \mathrm { x } + \mathrm { y } }

(Multiple Choice)
4.9/5
(40)

Solve the problem. -Find the derivative of the function f(x,y)=tan1yx\mathrm { f } ( \mathrm { x } , \mathrm { y } ) = \tan ^ { - 1 } \frac { \mathrm { y } } { \mathrm { x } } at the point (3,3)( - 3,3 ) in the direction in which the function increases most rapidly.

(Multiple Choice)
4.8/5
(35)

Provide an appropriate response. -Let T(x,y)=25x22xy+9y2\mathrm { T } ( \mathrm { x } , \mathrm { y } ) = 25 \mathrm { x } ^ { 2 } - 2 \mathrm { xy } + 9 \mathrm { y } ^ { 2 } be the temperature at the point (x,y)( \mathrm { x } , \mathrm { y } ) on the ellipse x=3cost,y=5\mathrm { x } = 3 \cos \mathrm { t } , \mathrm { y } = 5 sin tt , 0t2π0 \leq t \leq 2 \pi . Find the minimum and maximum temperatures, Tmin\mathrm { T } _ { \mathrm { min } } and Tmax\mathrm { T } _ { \mathrm { max } } , respectively, on the ellipse.

(Multiple Choice)
4.9/5
(43)

Provide an appropriate response. -Find any local extrema (maxima, minima, or saddle points) of f(x,y)f ( x , y ) given that fX=8x4y\mathrm { f } _ { \mathrm { X } } = 8 \mathrm { x } - 4 \mathrm { y } and fy=8x+6y\mathrm { f } _ { \mathrm { y } } = - 8 \mathrm { x } + 6 \mathrm { y } .

(Multiple Choice)
5.0/5
(32)

 Find fx,fy, and fZ\text { Find } \mathrm { f } _ { \mathbf { x } } , \mathrm { f } _ { \mathbf { y } } \text {, and } \mathrm { f } _ { \mathbf { Z } } - f(x,y,z)=z(ex)yf ( x , y , z ) = z \left( e ^ { x } \right) ^ { y }

(Multiple Choice)
4.8/5
(42)

Provide an appropriate response. -Determine whether the function f(x,y)=6x2y2+8x4y4f ( x , y ) = 6 x ^ { 2 } y ^ { 2 } + 8 x ^ { 4 } y ^ { 4 } has a maximum, a minimum, or neither at the origin.

(Multiple Choice)
4.8/5
(30)

Find the extreme values of the function subject to the given constraint. - f(x,y,z)=x2+2y2+3z2,xyz=1f ( x , y , z ) = x ^ { 2 } + 2 y ^ { 2 } + 3 z ^ { 2 } , x - y - z = 1

(Multiple Choice)
4.8/5
(34)

Find the requested partial derivative. - zy\frac { \partial z } { \partial y } if z3=z+xy1z ^ { 3 } = z + x y - 1 and y3=x+y1y ^ { 3 } = x + y - 1

(Multiple Choice)
4.9/5
(26)

Use Taylor's formula to find the requested approximation of f(x, y) near the origin. -Quadratic approximation to f(x,y)=1(1+x+6y)2f ( x , y ) = \frac { 1 } { ( 1 + x + 6 y ) ^ { 2 } }

(Multiple Choice)
4.9/5
(42)

Solve the problem. -Find the point on the paraboloid z=2x2y2z = 2 - x ^ { 2 } - y ^ { 2 } that is closest to the point (1,1,2)( 1,1,2 ) .

(Multiple Choice)
4.9/5
(25)

Give an appropriate answer. -Given the function f(x,y,z)f ( x , y , z ) and the positive number ε\varepsilon as in the formal definition of a limit, find a positive number δ\delta as in the definition that insures f(x,y,z)f(0,0,0)<ε| f ( x , y , z ) - f ( 0,0,0 ) | < \varepsilon . f(x,y,z)=sin2x+sin2y+sin2z;ε=0.12f ( x , y , z ) = \sin ^ { 2 } x + \sin ^ { 2 } y + \sin ^ { 2 } z ; \varepsilon = 0.12

(Essay)
4.7/5
(43)

Solve the problem. -About how much will f(x,y,z)=ln(7x+10y+9z)f ( x , y , z ) = \ln ( - 7 x + 10 y + 9 z ) change if the point (x,y,z)( x , y , z ) moves from (1,8,3)( - 1 , - 8,3 ) a distance of ds=110\mathrm { ds } = \frac { 1 } { 10 } unit in the direction of 12i+3j+4k12 \mathbf { i } + 3 \mathbf { j } + 4 \mathbf { k } ?

(Multiple Choice)
4.8/5
(43)

Solve the problem. -Find the distance from the point (1, -1, 2) to the plane x + y - z = 3.

(Multiple Choice)
4.8/5
(30)

Find the requested partial derivative. - (w/x)y( \partial w / \partial x ) _ { y } if w=x3+y3+z3+18xyzw = x ^ { 3 } + y ^ { 3 } + z ^ { 3 } + 18 x y z and z=x2+y2z = x ^ { 2 } + y ^ { 2 }

(Multiple Choice)
4.8/5
(33)

Find the linearization of the function at the given point. - f(x,y,z)=ln(6x10y4z) at (16,110,14)f ( x , y , z ) = \ln ( 6 x - 10 y - 4 z ) \text { at } \left( \frac { 1 } { 6 } , - \frac { 1 } { 10 } , - \frac { 1 } { 4 } \right)

(Multiple Choice)
4.8/5
(35)
Showing 41 - 60 of 409
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)