Exam 15: Partial Derivatives

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Solve the problem. -The resistance RR produced by wiring resistors of R1R _ { 1 } and R2R _ { 2 } ohms in parallel can be calculated from the formu: 1R=1R1+1R2.\frac { 1 } { R } = \frac { 1 } { R _ { 1 } } + \frac { 1 } { R _ { 2 } } . If R1R _ { 1 } and R2R _ { 2 } are measured to be 10 ohms and 5 ohms respectively and if these measurements are accurate to within 0.050.05 ohms, estimate the maximum percentage error in computing RR .

(Multiple Choice)
4.8/5
(34)

Find the domain and range and describe the level curves for the function f(x,y). - f(x,y)=y+2x2f ( x , y ) = \frac { y + 2 } { x ^ { 2 } }

(Multiple Choice)
5.0/5
(26)

Provide an appropriate response. -Find the value(s) of tt corresponding to the extrema of f(x,y,z)=sin(x2+y2)cos(z)f ( x , y , z ) = \sin \left( x ^ { 2 } + y ^ { 2 } \right) \cos ( z ) subject to the constraints x2+x ^ { 2 } + y2=6t,0tπy ^ { 2 } = 6 t , 0 \leq t \leq \pi , and z=π6z = \frac { \pi } { 6 } . Classify each extremum as a minimum or maximum. (Hint: w=f(x,y,z)w = f ( x , y , z ) is a differentiable function of t.

(Multiple Choice)
4.8/5
(38)

Solve the problem. -Write an equation for the tangent line to the curve x249+y2100=1\frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 100 } = 1 at the point (72,102)\left( \frac { 7 } { \sqrt { 2 } } , \frac { 10 } { \sqrt { 2 } } \right) .

(Multiple Choice)
4.9/5
(46)

Show that the function is a solution of the wave equation. - w(x,t)=exctw ( x , t ) = e ^ { x - c t }

(True/False)
4.8/5
(33)

Find the limit. - limP(1,1,0)7xz+6xyx2+y2z2\lim _ { P \rightarrow ( 1 , - 1,0 ) } \frac { - 7 x z + 6 x y } { x ^ { 2 } + y ^ { 2 } - z ^ { 2 } }

(Multiple Choice)
4.7/5
(25)

Provide an appropriate response. -Which order of differentiation will calculate fxyf _ { x y } faster, xx first or y first? f(x,y)=x2y+y2+1f ( x , y ) = x ^ { 2 } y + \sqrt { y ^ { 2 } + 1 }

(Multiple Choice)
4.8/5
(34)

Find the absolute maxima and minima of the function on the given domain. - f(x,y)=8x2+9y2 on the closed triangular region bounded by the lines y=x,y=2x, and x+y=6f ( x , y ) = 8 x ^ { 2 } + 9 y ^ { 2 } \text { on the closed triangular region bounded by the lines } y = x , y = 2 x \text {, and } x + y = 6

(Multiple Choice)
4.8/5
(34)

At what points is the given function continuous? - f(x,y)=2x+7yf ( x , y ) = \sqrt { 2 x + 7 y }

(Multiple Choice)
4.8/5
(42)

Solve the problem. -Find the extreme values of f(x,y,z)=x2+y2+z2f ( x , y , z ) = x ^ { 2 } + y ^ { 2 } + z ^ { 2 } subject to 3xy+z=63 x - y + z = 6 and x+2y+2z=2x + 2 y + 2 z = 2 .

(Multiple Choice)
4.9/5
(34)

Use polar coordinates to find the limit of the function as (x, y) approaches (0, 0). - f(x,y)=cos1(x3xy2x2+y2)f ( x , y ) = \cos ^ { - 1 } \left( \frac { x ^ { 3 } - x y ^ { 2 } } { x ^ { 2 } + y ^ { 2 } } \right)

(Multiple Choice)
5.0/5
(39)

Compute the gradient of the function at the given point. -f(x, y) = 3x - 10y, (3, -4)

(Multiple Choice)
4.8/5
(38)

Find the absolute maxima and minima of the function on the given domain. -f(x, y) = 6x + 7y on the closed triangular region with vertices (0, 0), (1, 0), and (0, 1)

(Multiple Choice)
4.8/5
(36)

 Find fx,fy, and fZ\text { Find } \mathrm { f } _ { \mathbf { x } } , \mathrm { f } _ { \mathbf { y } } \text {, and } \mathrm { f } _ { \mathbf { Z } } - f(x,y,z)=cosxsin2(yz)f ( x , y , z ) = \cos x \sin ^ { 2 } ( y z )

(Multiple Choice)
5.0/5
(38)

Find an upper bound for the magnitude |E| of the error in the approximation f(x, y) ≈ L(x, y) at the given point over the given region R. - f(x,y)=e7x+10yf ( x , y ) = e ^ { 7 x + 10 y } at (0,0);R:x0.1,y0.1( 0,0 ) ; R : | x | \leq 0.1 , | y | \leq 0.1

(Multiple Choice)
4.8/5
(37)

Provide an appropriate response. -Find any local extrema (maxima, minima, or saddle points) of f(x,y)f ( x , y ) given that fx=8x24f _ { x } = 8 x - 24 and fy=2y4f _ { y } = 2 y - 4 .

(Multiple Choice)
4.8/5
(38)

Solve the problem. -Find the extreme values of f(x,y,z)=xyzf ( x , y , z ) = x y z subject to x2+y2+z2=4x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 4 and x+y=2x + y = 2 .

(Multiple Choice)
4.7/5
(29)

Solve the problem. -Find parametric equations for the normal line to the surface -6x - 7y - 6z = -11 at the point (1, -1, 2).

(Multiple Choice)
5.0/5
(34)

At what points is the given function continuous? - f(x,y)=xy2x2+x6f ( x , y ) = \frac { x - y } { 2 x ^ { 2 } + x - 6 }

(Multiple Choice)
4.8/5
(45)

Find the absolute maximum and minimum values of the function on the given curve. -Function: f(x,y)=x2+2y2;f ( x , y ) = x ^ { 2 } + 2 y ^ { 2 } ; curve: x29+y216=1,x0\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 16 } = 1 , x \geq 0 , y0y \geq 0 . (Use the parametric equations x=3x = 3 cos tt , y=4sinty = 4 \sin t .)

(Multiple Choice)
4.9/5
(41)
Showing 241 - 260 of 409
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)