Exam 15: Partial Derivatives

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Solve the problem. -  Find the equation for the tangent plane to the surface x210xyz+y2=12z2 at the point (1,11)\text { Find the equation for the tangent plane to the surface } x ^ { 2 } - 10 x y z + y ^ { 2 } = 12 z ^ { 2 } \text { at the point } ( - 1 , - 1 \text {, } - 1 ) \text {. }

(Multiple Choice)
4.8/5
(42)

Find all the second order partial derivatives of the given function. - f(x,y)=xln(yx)f ( x , y ) = x \ln ( y - x )

(Multiple Choice)
4.7/5
(30)

Use polar coordinates to find the limit of the function as (x, y) approaches (0, 0). - f(x,y)=cos(x2x2+y2)f ( x , y ) = \cos \left( \frac { x ^ { 2 } } { x ^ { 2 } + y ^ { 2 } } \right)

(Multiple Choice)
4.9/5
(36)

Write a chain rule formula for the following derivative. - wt\frac { \partial \mathrm { w } } { \partial \mathrm { t } } for w=f(x,y,z);x=g(s,t),y=h(s,t),z=k(s)\mathrm { w } = \mathrm { f } ( \mathrm { x } , \mathrm { y } , \mathrm { z } ) ; \mathrm { x } = \mathrm { g } ( \mathrm { s } , \mathrm { t } ) , \mathrm { y } = \mathrm { h } ( \mathrm { s } , \mathrm { t } ) , \mathrm { z } = \mathrm { k } ( \mathrm { s } )

(Multiple Choice)
4.8/5
(40)

Sketch the surface z = f(x,y). - f(x,y)=x2+y2f ( x , y ) = - \sqrt { x ^ { 2 } + y ^ { 2 } }

(Multiple Choice)
4.8/5
(38)

Solve the problem. -Find the derivative of the function f(x, y, z) = ln(xy + yz + zx) at the point (8, 16, 24) in the direction in which the function increases most rapidly.

(Multiple Choice)
4.8/5
(35)

Solve the problem. -Find an equation for the level curve of the function f(x,y)=xytdtf ( x , y ) = \int _ { x } ^ { y } t d t that passes through the point (6,9)( 6,9 ) .

(Multiple Choice)
5.0/5
(37)

Find the equation for the level surface of the function through the given point. - f(x,y,z)=x2yxz+y2,(2,7,8)f ( x , y , z ) = \frac { x ^ { 2 } y } { x z + y ^ { 2 } } , ( 2,7,8 )

(Multiple Choice)
4.9/5
(44)

Find all the local maxima, local minima, and saddle points of the function. - f(x,y)=2x4y4f ( x , y ) = 2 - x ^ { 4 } y ^ { 4 }

(Multiple Choice)
4.9/5
(37)

Find the domain and range and describe the level curves for the function f(x,y). - f(x,y)=(4x3y)3f ( x , y ) = ( - 4 x - 3 y ) ^ { 3 }

(Multiple Choice)
4.7/5
(37)

Compute the gradient of the function at the given point. -f(x, y) = ln(-5x + 3y), (-9, -4)

(Multiple Choice)
4.9/5
(33)

Find an upper bound for the magnitude |E| of the error in the approximation f(x, y) ≈ L(x, y) at the given point over the given region R. - f(x,y)=4x+7y5 at (10,9);R:x100.1,y+90.1f ( x , y ) = 4 x + 7 y - 5 \text { at } ( 10 , - 9 ) ; R : | x - 10 | \leq 0.1 , | y + 9 | \leq 0.1

(Multiple Choice)
4.7/5
(39)

Solve the problem. -What points of the surface xyz26y+36=0x y - z ^ { 2 } - 6 y + 36 = 0 are closest to the origin?

(Multiple Choice)
4.8/5
(33)

Find the limit. - lim(x,y)(2,2)ex2y2\lim _ { ( x , y ) \rightarrow ( 2,2 ) } e ^ { - x ^ { 2 } - y ^ { 2 } }

(Multiple Choice)
4.8/5
(29)

Sketch a typical level surface for the function. - f(x,y,z)=xy2z2f ( x , y , z ) = x - y ^ { 2 } - z ^ { 2 }

(Multiple Choice)
4.8/5
(36)

Find all the second order partial derivatives of the given function. - f(x,y)=ex/yf ( x , y ) = e ^ { x / y }

(Multiple Choice)
4.9/5
(40)

Use polar coordinates to find the limit of the function as (x, y) approaches (0, 0). - f(x,y)=x+yx2+y+y2f ( x , y ) = \frac { x + y } { x ^ { 2 } + y + y ^ { 2 } }

(Multiple Choice)
4.8/5
(34)

Provide an appropriate response. -Find any local extrema (maxima, minima, or saddle points) of f(x,y)\mathrm { f } ( \mathrm { x } , \mathrm { y } ) given that fx=5x+5y\mathrm { f } _ { \mathrm { x } } = 5 \mathrm { x } + 5 \mathrm { y } and fy=3x8y\mathrm { f } _ { \mathrm { y } } = 3 \mathrm { x } - 8 \mathrm { y } .

(Multiple Choice)
4.9/5
(33)

Find the limit. -Find the limit. -

(Multiple Choice)
4.8/5
(42)

Give an appropriate answer. - f(x,y)=xx+yf ( x , y ) = \frac { x } { x + y }

(Multiple Choice)
4.8/5
(43)
Showing 261 - 280 of 409
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)