Exam 15: Partial Derivatives

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Solve the problem. -What is the distance from the surface xyz26y+36=0x y - z ^ { 2 } - 6 y + 36 = 0 to the origin?

(Multiple Choice)
4.8/5
(44)

Compute the gradient of the function at the given point. - f(x,y,z)=2xy3z2,(2,8,4)f ( x , y , z ) = 2 x y ^ { 3 } z ^ { 2 } , \quad ( 2,8,4 )

(Multiple Choice)
4.8/5
(44)

Give an appropriate answer. - f(x,y)=xyeyf ( x , y ) = x y e ^ { - y }

(Multiple Choice)
4.8/5
(44)

Provide an appropriate response. -For which of the following functions do both fX\mathrm { f } _ { \mathrm { X } } and fy\mathrm { f } _ { \mathrm { y } } exist?  Provide an appropriate response. -For which of the following functions do both  \mathrm { f } _ { \mathrm { X } }  and  \mathrm { f } _ { \mathrm { y } }  exist?

(Multiple Choice)
4.9/5
(32)

Give an appropriate answer. - f(x,y)=3x3y28f ( x , y ) = 3 x - 3 y ^ { 2 } - 8

(Multiple Choice)
4.9/5
(34)

Determine whether the given function satisfies a Laplace equation. - f(x,y)=x2yf ( x , y ) = \frac { x ^ { 2 } } { y }

(True/False)
4.7/5
(43)

Solve the problem. -The surface area of a hollow cylinder (tube) is given by S=2π(R1+R2)(h+R1R2),\mathrm { S } = 2 \pi \left( \mathrm { R } _ { 1 } + \mathrm { R } _ { 2 } \right) \left( \mathrm { h } + \mathrm { R } _ { 1 } - \mathrm { R } _ { 2 } \right) , where hh is the length of the cylinder and R1R _ { 1 } and R2R _ { 2 } are the outer and inner radii. If hR1h _ { \text {, } } R _ { 1 } , and R2R _ { 2 } are measured to be 6 inches, 7 inches, and 9 inches respectively, and if these measurements are accurate to within 0.10.1 inches, estimate the maximum percentage error in computing S\mathrm { S } .

(Multiple Choice)
4.7/5
(34)

Find the specific function value. -  Find f(4,6) when f(x,y)=(x+y)3\text { Find } f ( 4,6 ) \text { when } f ( x , y ) = ( x + y ) ^ { 3 }

(Multiple Choice)
4.8/5
(29)

Write a chain rule formula for the following derivative. - wx\frac { \partial w } { \partial x } for w=f(p,q);p=g(x,y),q=h(x,y)w = f ( p , q ) ; p = g ( x , y ) , q = h ( x , y )

(Multiple Choice)
4.9/5
(47)

Find the requested partial derivative. - (w/y)X at (x,y,z,w)=(1,1,2,14) if w=2x+6y+3z and x+y=z( \partial \mathrm { w } / \partial \mathrm { y } ) _ { \mathrm { X } } \text { at } ( \mathrm { x } , \mathrm { y } , \mathrm { z } , \mathrm { w } ) = ( 1,1,2,14 ) \text { if } \mathrm { w } = 2 \mathrm { x } + 6 \mathrm { y } + 3 \mathrm { z } \text { and } \mathrm { x } + \mathrm { y } = \mathrm { z }

(Multiple Choice)
4.9/5
(27)

Find the specific function value. -  Find f(3,0,9) when f(x,y,z)=3x2+3y2z2\text { Find } f ( 3,0,9 ) \text { when } f ( x , y , z ) = 3 x ^ { 2 } + 3 y ^ { 2 } - z ^ { 2 }

(Multiple Choice)
4.9/5
(45)

Sketch the surface z = f(x,y). - f(x,y)=2x2y2f ( x , y ) = 2 - x ^ { 2 } - y ^ { 2 }

(Multiple Choice)
4.9/5
(42)

Use Taylor's formula to find the requested approximation of f(x, y) near the origin. -Cubic approximation to f(x, y) = ln(1 + 7x + y)

(Multiple Choice)
4.8/5
(46)

Match the surface show below to the graph of its level curves. -Match the surface show below to the graph of its level curves. -

(Multiple Choice)
4.8/5
(38)

Show that the function is a solution of the wave equation. -w(x, t) = ln cxt

(True/False)
4.8/5
(35)

Write a chain rule formula for the following derivative. - ux for u=f(p,q);p=g(x,y,z),q=h(x,y,z)\frac { \partial \mathrm { u } } { \partial \mathrm { x } } \text { for } \mathrm { u } = \mathrm { f } ( \mathrm { p } , \mathrm { q } ) ; \mathrm { p } = \mathrm { g } ( \mathrm { x } , \mathrm { y } , \mathrm { z } ) , \mathrm { q } = \mathrm { h } ( \mathrm { x } , \mathrm { y } , \mathrm { z } )

(Multiple Choice)
4.9/5
(31)

Write a chain rule formula for the following derivative. - ux\frac { \partial \mathrm { u } } { \partial \mathrm { x } } for u=f(r,s,t);r=g(y),s=h(z),t=k(x,z)\mathrm { u } = \mathrm { f } ( \mathrm { r } , \mathrm { s } , \mathrm { t } ) ; \mathrm { r } = \mathrm { g } ( \mathrm { y } ) , \mathrm { s } = \mathrm { h } ( \mathrm { z } ) , \mathrm { t } = \mathrm { k } ( \mathrm { x } , \mathrm { z } )

(Multiple Choice)
4.8/5
(37)

Find the derivative of the function at P0 in the direction of u. - f(x,y,z)=tan14x2y+4z,P0(9,0,0),u=12i3j+4kf ( x , y , z ) = \tan ^ { - 1 } \frac { 4 x } { 2 y + 4 z } , \quad P _ { 0 } ( - 9,0,0 ) , \quad \mathbf { u } = 12 \mathbf { i } - 3 \mathbf { j } + 4 \mathbf { k }

(Multiple Choice)
4.8/5
(36)

At what points is the given function continuous? -f(x, y, z) = ln(x + y + z - 6)

(Multiple Choice)
4.8/5
(43)

Solve the problem. -A rectangle with sides parallel to the axes is inscribed in the region bounded by the axes and the line x + 2y = 2. Find the maximum area of this rectangle.

(Multiple Choice)
4.8/5
(40)
Showing 181 - 200 of 409
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)