Exam 15: Partial Derivatives

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Provide an appropriate response. -Find the direction in which the function is increasing most rapidly at the point P0\mathrm { P } _ { 0 } . f(x,y,z)=xyln(z),P0(1,2,2)f ( x , y , z ) = x y - \ln ( z ) , P _ { 0 } ( 1,2,2 )

(Multiple Choice)
4.9/5
(42)

Determine whether the given function satisfies a Laplace equation. - f(x,y)=e10ysin10xf ( x , y ) = e ^ { 10 y } \sin 10 x

(True/False)
4.9/5
(37)

Find the limit. - lim(x,y)(0,0)sin(x10+y5xy+10)\lim _ { ( x , y ) \rightarrow ( 0,0 ) } \sin \left( \frac { x ^ { 10 } + y ^ { 5 } } { x - y + 10 } \right)

(Multiple Choice)
4.9/5
(39)

Solve the problem. -Find the derivative of the function f(x,y)=tan1yxf ( x , y ) = \tan ^ { - 1 } \frac { y } { x } at the point (4,4)( - 4,4 ) in the direction in which the function decreases most rapidly.

(Multiple Choice)
4.9/5
(39)

Determine whether the given function satisfies a Laplace equation. - f(x,y,z)=cos(6x)sin(5y)e(61z)f ( x , y , z ) = \cos ( 6 x ) \sin ( - 5 y ) e ^ { ( \sqrt { 61 } z ) }

(True/False)
4.9/5
(37)

Find the limit. -Find the limit. -

(Multiple Choice)
4.9/5
(30)

Solve the problem. -A rectangular box is to be inscribed inside the ellipsoid 2x2+y2+4z2=122 x ^ { 2 } + y ^ { 2 } + 4 z ^ { 2 } = 12 . Find the largest possible volume for the box.

(Multiple Choice)
4.8/5
(43)

Solve the problem. -  Write an equation for the tangent line to the curve x210xy+y2=12 at the point (1,1)\text { Write an equation for the tangent line to the curve } x ^ { 2 } - 10 x y + y ^ { 2 } = 12 \text { at the point } ( - 1,1 ) \text {. }

(Multiple Choice)
4.8/5
(34)

Find all the second order partial derivatives of the given function. - f(x,y)=x2+yex+yf ( x , y ) = x ^ { 2 } + y - e ^ { x + y }

(Multiple Choice)
4.8/5
(45)

Compute the gradient of the function at the given point. - f(x,y,z)=tan17x9y+3z,(9,0,0)f ( x , y , z ) = \tan ^ { - 1 } \frac { 7 x } { 9 y + 3 z } , ( 9,0,0 )

(Multiple Choice)
4.8/5
(33)

Use the limit definition of the partial derivative to compute the indicated partial derivative of the function at the specified point. -  Find fy at the point (3,2,8):f(x,y,z)=xyz7y27z\text { Find } \frac { \partial f } { \partial y } \text { at the point } ( - 3 , - 2 , - 8 ) : f ( x , y , z ) = x y z - 7 y ^ { 2 } - 7 z

(Essay)
4.8/5
(34)

Find all the local maxima, local minima, and saddle points of the function. -f(x, y) = 10xy(x + y) + 4

(Multiple Choice)
4.9/5
(40)

Show that the function is a solution of the wave equation. - w(x,t)=e2ctcos2xw ( x , t ) = e ^ { 2 c t } \cos 2 x

(True/False)
4.8/5
(39)

Find the linearization of the function at the given point. - f(x,y)=3sinx8cosyf ( x , y ) = 3 \sin x - 8 \cos y at (0,π2)\left( 0 , \frac { \pi } { 2 } \right)

(Multiple Choice)
4.8/5
(35)

Find the derivative of the function at P0 in the direction of u. - f(x,y,z)=2xy3z2,P0(2,8,4),u=2i+j2kf ( x , y , z ) = 2 x y ^ { 3 } z ^ { 2 } , \quad P _ { 0 } ( 2,8,4 ) , \quad \mathbf { u } = - 2 \mathbf { i } + \mathbf { j } - 2 \mathbf { k }

(Multiple Choice)
4.8/5
(41)

Solve the problem. -  Evaluate zu at (u,v)=(4,5) for the function z=xyy2;x=uv,y=uv\text { Evaluate } \frac { \partial \mathrm { z } } { \partial \mathrm { u } } \text { at } ( \mathrm { u } , \mathrm { v } ) = ( 4,5 ) \text { for the function } \mathrm { z } = \mathrm { xy } - \mathrm { y } ^ { 2 } ; \mathrm { x } = \mathrm { u } - \mathrm { v } , \mathrm { y } = \mathrm { uv }

(Multiple Choice)
4.9/5
(33)

Find all the second order partial derivatives of the given function. - f(x,y)=xyey2f ( x , y ) = x y e ^ { - y ^ { 2 } }

(Multiple Choice)
4.8/5
(35)

Provide an appropriate answer. -Find wr\frac { \partial \mathrm { w } } { \partial \mathrm { r } } when r=5\mathrm { r } = 5 and s=2\mathrm { s } = - 2 if w(x,y,z)=xz+y2,x=3r+7,y=r+s\mathrm { w } ( \mathrm { x } , \mathrm { y } , \mathrm { z } ) = \mathrm { xz } + \mathrm { y } ^ { \wedge } 2 , \mathrm { x } = 3 \mathrm { r } + 7 , \mathrm { y } = \mathrm { r } + \mathrm { s } , and z=rs\mathrm { z } = \mathrm { r } - \mathrm { s }

(Multiple Choice)
4.9/5
(35)

Compute the gradient of the function at the given point. - f(x,y)=tan19xyf ( x , y ) = \tan ^ { - 1 } \frac { - 9 x } { y }

(Multiple Choice)
4.9/5
(43)

Provide an appropriate response. -Find any local extrema (maxima, minima, or saddle points) of f(x,y)f ( x , y ) given that fx=4x+4y\mathrm { f } _ { \mathrm { x } } = - 4 \mathrm { x } + 4 \mathrm { y } and fy=7x8y\mathrm { f } _ { \mathrm { y } } = 7 \mathrm { x } - 8 \mathrm { y } .

(Multiple Choice)
4.9/5
(43)
Showing 121 - 140 of 409
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)