Exam 15: Partial Derivatives

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Solve the problem. -The Redlich-Kwong equation provides an approximate model for the behavior of real gases. The equation is P(V,T)=RTVbaT1/2 V( V+b)\mathrm { P } ( \mathrm { V } , \mathrm { T } ) = \frac { \mathrm { RT } } { \mathrm { V } - \mathrm { b } } - \frac { \mathrm { a } } { \mathrm { T } ^ { 1 / 2 } \mathrm {~V} ( \mathrm {~V} + \mathrm { b } ) } , where P\mathrm { P } is pressure, V\mathrm { V } is volume, T\mathrm { T } is Kelvin temperature, and a,ba , b , and R\mathrm { R } are constants. Find the partial derivative of the function with respect to each variable.

(Multiple Choice)
4.8/5
(39)

Give an appropriate answer. -Given the function f(x,y,z)\mathrm { f } ( \mathrm { x } , \mathrm { y } , \mathrm { z } ) and the positive number ε\varepsilon as in the formal definition of a limit, find a positive number δ\delta as in the definition that insures f(x,y,z)f(0,0,0)<ε| f ( x , y , z ) - f ( 0,0,0 ) | < \varepsilon . f(x,y,z)=x+y+z;ε=0.12f ( x , y , z ) = x + y + z ; \varepsilon = 0.12

(Essay)
4.7/5
(44)

Solve the problem. -Find the least squares line for the points (6, 30), (7, -35), (8, 40), (9, -45).

(Multiple Choice)
4.8/5
(41)

Find the absolute maxima and minima of the function on the given domain. - f(x,y)=x2+12x+y2+16y+10 on the rectangular region 1x1,2y2f ( x , y ) = x ^ { 2 } + 12 x + y ^ { 2 } + 16 y + 10 \text { on the rectangular region } - 1 \leq x \leq 1 , - 2 \leq y \leq 2

(Multiple Choice)
4.9/5
(44)

Find two paths of approach from which one can conclude that the function has no limit as (x, y) approaches (0, 0). - f(x,y)=y2y2xf ( x , y ) = \frac { y ^ { 2 } } { y ^ { 2 } - x }

(Essay)
4.7/5
(35)

 Find fx,fy, and fZ\text { Find } \mathrm { f } _ { \mathbf { x } } , \mathrm { f } _ { \mathbf { y } } \text {, and } \mathrm { f } _ { \mathbf { Z } } - f(x,y,z)=zx+y2f ( x , y , z ) = \frac { z } { \sqrt { x + y ^ { 2 } } }

(Multiple Choice)
4.9/5
(37)

Find the extreme values of the function subject to the given constraint. - f(x,y,z)=x+y+z,1x+1y+1z=1f ( x , y , z ) = x + y + z , \frac { 1 } { x } + \frac { 1 } { y } + \frac { 1 } { z } = 1

(Multiple Choice)
4.8/5
(44)

Find the limit. -Find the limit. -

(Multiple Choice)
4.8/5
(31)

Use implicit differentiation to find the specified derivative at the given point. -Find xy\frac { \partial x } { \partial y } at the point (1,π24,6)\left( 1 , \frac { \pi } { 24 } , 6 \right) for ex2cosyz=0\mathrm { e } ^ { \mathrm { x } ^ { 2 } } \cos \mathrm { yz } = 0 .

(Multiple Choice)
4.8/5
(40)

Provide an appropriate response. -Find any local extrema (maxima, minima, or saddle points) of f(x,y)f ( x , y ) given that fX=49x249f _ { X } = 49 x ^ { 2 } - 49 and fy=3y+6f _ { y } = 3 y + 6

(Multiple Choice)
4.8/5
(40)

Solve the problem. -About how much will f(x,y)=tan1xyf ( x , y ) = \tan ^ { - 1 } x y change if the point (x,y,z)( x , y , z ) moves from (92,62)\left( 9 \sqrt { 2 } , \frac { - 6 } { \sqrt { 2 } } \right) a distance of ds=110\mathrm { ds } = \frac { 1 } { 10 } unit in the direction of i+j?\mathbf { i } + \mathbf { j } ?

(Multiple Choice)
4.8/5
(42)

Find all the local maxima, local minima, and saddle points of the function. - f(x,y)=81x2+72xy+64y2f ( x , y ) = 81 x ^ { 2 } + 72 x y + 64 y ^ { 2 }

(Multiple Choice)
4.9/5
(41)

Solve the problem. -  Evaluate uz at (x,y,z)=(3,4,1) for the function u=p2q2r;p=yz,q=x+z,r=x+y\text { Evaluate } \frac { \partial \mathrm { u } } { \partial \mathrm { z } } \text { at } ( \mathrm { x } , \mathrm { y } , \mathrm { z } ) = ( 3,4,1 ) \text { for the function } \mathrm { u } = \mathrm { p } ^ { 2 } \mathrm { q } ^ { 2 } - \mathrm { r } ; \mathrm { p } = \mathrm { y } - \mathrm { z } , \mathrm { q } = \mathrm { x } + \mathrm { z } , \mathrm { r } = \mathrm { x } + \mathrm { y }

(Multiple Choice)
4.7/5
(25)

Find the requested partial derivative. - (z/x)y( \partial z / \partial x ) _ { y } at (x,y,z)=(1,1,1)( x , y , z ) = ( 1,1,1 ) if z3+6xyz=7z ^ { 3 } + 6 x y z = 7

(Multiple Choice)
4.9/5
(38)

Match the surface show below to the graph of its level curves. -Match the surface show below to the graph of its level curves. -

(Multiple Choice)
4.9/5
(33)

Solve the problem. -A rectangular box with square base and no top is to have a volume of 32ft332 \mathrm { ft } ^ { 3 } . What is the least amount of material required?

(Multiple Choice)
4.8/5
(40)

Solve the problem. -  Maximize f(x,y,z)=e4x+9y+2z subject to x+y+z=0,x+2y+3z=0, and x+4y+9z=0\text { Maximize } f ( x , y , z ) = e ^ { 4 x + 9 y + 2 z } \text { subject to } x + y + z = 0 , x + 2 y + 3 z = 0 \text {, and } x + 4 y + 9 z = 0

(Multiple Choice)
4.9/5
(42)

Find the specific function value. -Find f(3,6)f ( 3,6 ) when f(x,y)=3x+y2f ( x , y ) = \sqrt { 3 x + y ^ { 2 } } .

(Multiple Choice)
4.8/5
(47)

Provide an appropriate response. -For the space curve x=t,y=t2,z=tx = t , y = t ^ { 2 } , z = t , find the points at which the function f(x,y)f ( x , y ) takes on extreme values if fX=f _ { X } = 9,fy=t29 , \mathrm { f } _ { \mathrm { y } } = \frac { \mathrm { t } } { 2 } , and fz=30t\mathrm { f } _ { \mathrm { z } } = - 30 \mathrm { t }

(Multiple Choice)
4.8/5
(49)

Give an appropriate answer. -Given the function f(x,y)f ( x , y ) and the positive number ε\varepsilon as in the formal definition of a limit, find a positive number δ\delta as in the definition that insures f(x,y)f(0,0)<ε| \mathrm { f } ( \mathrm { x } , \mathrm { y } ) - \mathrm { f } ( 0,0 ) | < \varepsilon . f(x,y)=x+yx2+y2+1;ε=0.06f ( x , y ) = \frac { x + y } { x ^ { 2 } + y ^ { 2 } + 1 } ; \varepsilon = 0.06

(Essay)
5.0/5
(37)
Showing 341 - 360 of 409
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)