Exam 15: Partial Derivatives

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Solve the problem. -A simple electrical circuit consists of a resistor connected between the terminals of a battery. The voltage VV (in volts) is dropping as the battery wears out. At the same time, the resistance RR (in ohms) is increasing as the resistor heats up. The power PP (in watts) dissipated by the circuit is given by P=V2RP = \frac { V ^ { 2 } } { R } . Use the equation dPdt=PVdVdt+PRdRdt\frac { \mathrm { dP } } { \mathrm { dt } } = \frac { \partial \mathrm { P } } { \partial \mathrm { V } } \frac { \mathrm { dV } } { \mathrm { dt } } + \frac { \partial \mathrm { P } } { \partial \mathrm { R } } \frac { \mathrm { dR } } { \mathrm { dt } } to find how much the power is changing at the instant when R=5R = 5 ohms, V=4V = 4 volts, dR/dt=1d R / d t = 1 ohms/sec and dVd V , =0.04= - 0.04 volts/sec.

(Multiple Choice)
4.8/5
(41)

Solve the problem. -Amarillo Motors manufactures an economy car called the Citrus, which is notorious for its inability to hold a respectable resale value. The average resale value of a set of 1998 Amarillo Citrus's is summarized in the table below along with the age of the car at the time of resale and the number of cars included in the average. Fit a line of the form ln(V)=ma+b\ln ( \mathrm { V } ) = \mathrm { m } \cdot \mathrm { a } + \mathrm { b } to the data, where V\mathrm { V } is the resale value in thousands of dollars and a is the age of the car in years..  Solve the problem. -Amarillo Motors manufactures an economy car called the Citrus, which is notorious for its inability to hold a respectable resale value. The average resale value of a set of 1998 Amarillo Citrus's is summarized in the table below along with the age of the car at the time of resale and the number of cars included in the average. Fit a line of the form  \ln ( \mathrm { V } ) = \mathrm { m } \cdot \mathrm { a } + \mathrm { b }  to the data, where  \mathrm { V }  is the resale value in thousands of dollars and a is the age of the car in years..

(Multiple Choice)
4.9/5
(43)

Provide an appropriate response. -Find the direction in which the function is increasing most rapidly at the point P0P _ { 0 } . f(x,y)=xy2yx2,P0(1,1)f ( x , y ) = x y ^ { 2 } - y x ^ { 2 } , P _ { 0 } ( - 1,1 )

(Multiple Choice)
4.9/5
(40)

Solve the problem. -Evaluate uy\frac { \partial \mathrm { u } } { \partial \mathrm { y } } at (x,y,z)=(2,3,0)( \mathrm { x } , \mathrm { y } , \mathrm { z } ) = ( 2,3,0 ) for the function u=epqcos(r);p=1x,q=x2lny,r=z\mathrm { u } = \mathrm { epq } \cos ( \mathrm { r } ) ; \mathrm { p } = \frac { 1 } { \mathrm { x } } , \mathrm { q } = \mathrm { x } ^ { 2 } \ln \mathrm { y } , \mathrm { r } = \mathrm { z } .

(Multiple Choice)
4.9/5
(41)

Find the extreme values of the function subject to the given constraint. - f(x,y,z)=(x1)2+(y2)2+(z2)2,x2+y2+z2=36f ( x , y , z ) = ( x - 1 ) ^ { 2 } + ( y - 2 ) ^ { 2 } + ( z - 2 ) ^ { 2 } , x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 36

(Multiple Choice)
4.8/5
(43)

Use the limit definition of the partial derivative to compute the indicated partial derivative of the function at the specified point. -  Find fy at the point (3,9,9):f(x,y,z)=2x2y+2y2+10z\text { Find } \frac { \partial f } { \partial y } \text { at the point } ( 3 , - 9,9 ) : f ( x , y , z ) = 2 x ^ { 2 } y + 2 y ^ { 2 } + 10 z

(Essay)
4.8/5
(32)

Find the extreme values of the function subject to the given constraint. - f(x,y)=x2y,x2+2y2=6f ( x , y ) = x ^ { 2 } y , x ^ { 2 } + 2 y ^ { 2 } = 6

(Multiple Choice)
5.0/5
(45)

Provide an appropriate answer. -Find zv\frac { \partial z } { \partial v } when u=5u = 5 and v=1v = 1 if z(x)=xx+5z ( x ) = \frac { x } { \sqrt { x + 5 } } and x=uvx = u \cdot v .

(Multiple Choice)
4.8/5
(28)

Provide an appropriate answer. -Find wu\frac { \partial \mathrm { w } } { \partial \mathrm { u } } when u=2\mathrm { u } = 2 and v=5\mathrm { v } = - 5 if w(x,y,z)=xyz,x=uv,y=u+v\mathrm { w } ( \mathrm { x } , \mathrm { y } , \mathrm { z } ) = \frac { \mathrm { xy } } { \mathrm { z } } , \mathrm { x } = \frac { \mathrm { u } } { \mathrm { v } } , \mathrm { y } = \mathrm { u } + \mathrm { v } , and z=uv\mathrm { z } = \mathrm { u } \cdot \mathrm { v } .

(Multiple Choice)
4.9/5
(35)

Find the domain and range and describe the level curves for the function f(x,y). - f(x,y)=9x2yf ( x , y ) = \frac { 9 x ^ { 2 } } { y }

(Multiple Choice)
4.8/5
(42)

Use Taylor's formula to find the requested approximation of f(x, y) near the origin. -Cubic approximation to f(x,y)=1(1+x+3y)2f ( x , y ) = \frac { 1 } { ( 1 + x + 3 y ) ^ { 2 } }

(Multiple Choice)
4.9/5
(31)

Solve the problem. -Find the least squares line through the points (1, 18), (2, 42), and (3, 36).

(Multiple Choice)
4.8/5
(29)

Solve the problem. -Find the points on the curve xy2=686x y ^ { 2 } = 686 that are closest to the origin.

(Multiple Choice)
4.7/5
(34)

Find the limit. - (x,y)(0,π4)secx+710xtany( x , y ) - \left( 0 , - \frac { \pi } { 4 } \right) ^ { \frac { \sec x + 7 } { 10 x - \tan y } }

(Multiple Choice)
5.0/5
(36)

Find the absolute maximum and minimum values of the function on the given curve. -Function: f(x,y)=xy;f ( x , y ) = x y ; curve: x2+y2=49,x0,y0x ^ { 2 } + y ^ { 2 } = 49 , x \geq 0 , y \geq 0 . (Use the parametric equations x=7x = 7 cos t,y=7sintt , y = 7 \sin t .)

(Multiple Choice)
4.8/5
(31)

Find an upper bound for the magnitude |E| of the error in the approximation f(x, y) ≈ L(x, y) at the given point over the given region R. - f(x,y,z)=8x2+7y2+2z2 at (1,2,3);R:x10.1,y+20.1,z30.1f ( x , y , z ) = 8 x ^ { 2 } + 7 y ^ { 2 } + 2 z ^ { 2 } \text { at } ( 1 , - 2,3 ) ; R : | x - 1 | \leq 0.1 , | y + 2 | \leq 0.1 , | z - 3 | \leq 0.1

(Multiple Choice)
4.9/5
(32)

Sketch the surface z = f(x,y). - f(x,y)=x2f ( x , y ) = x ^ { 2 }

(Multiple Choice)
4.9/5
(34)

Find the extreme values of the function subject to the given constraint. - f(x,y)=7x2+3y2,x2+y2=1f ( x , y ) = 7 x ^ { 2 } + 3 y ^ { 2 } , x ^ { 2 } + y ^ { 2 } = 1

(Multiple Choice)
5.0/5
(42)

Find two paths of approach from which one can conclude that the function has no limit as (x, y) approaches (0, 0). -Does knowing that 3x2y3<3tan1xyxy<33 - x ^ { 2 } y ^ { 3 } < \frac { 3 \tan ^ { - 1 } x y } { x y } < 3 tell you anything about (x,y)(0,0)3tan1xyxy( x , y ) \rightarrow ( 0,0 ) \frac { 3 \tan ^ { - 1 } x y } { x y } ? Give reasons for your answer.

(Essay)
4.9/5
(37)

Find the specific function value. -Find f(100, 3) when f(x, y) = y log x.

(Multiple Choice)
4.8/5
(33)
Showing 321 - 340 of 409
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)