Exam 15: Partial Derivatives

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

At what points is the given function continuous? - f(x,y,z)=zx2+y25f ( x , y , z ) = \frac { z } { x ^ { 2 } + y ^ { 2 } - 5 }

(Multiple Choice)
4.8/5
(36)

Find the absolute maxima and minima of the function on the given domain. - f(x,y)=5xy2+8xy on the trapezoidal region with vertices (0,0),(1,0),(0,2), and (1,1)f ( x , y ) = 5 x y ^ { 2 } + 8 x y \quad \text { on the trapezoidal region with vertices } ( 0,0 ) , ( 1,0 ) , ( 0,2 ) \text {, and } ( 1,1 )

(Multiple Choice)
4.8/5
(38)

Find the linearization of the function at the given point. - f(x,y,z)=7x2+8y2+7z2 at (1,2,3)f ( x , y , z ) = 7 x ^ { 2 } + 8 y ^ { 2 } + 7 z ^ { 2 } \text { at } ( 1 , - 2,3 )

(Multiple Choice)
4.8/5
(41)

Solve the problem. -Find the point on the curve of intersection of the paraboloid x2+y2+2z=4x ^ { 2 } + y ^ { 2 } + 2 z = 4 and the plane xy+2z=0x - y + 2 z = 0 that is closest to the origin.

(Multiple Choice)
5.0/5
(41)

Find the linearization of the function at the given point. - f(x,y)=4x2y3 at (9,5)f ( x , y ) = 4 x ^ { 2 } y ^ { 3 } \text { at } ( - 9,5 )

(Multiple Choice)
4.9/5
(33)

Sketch a typical level surface for the function. - f(x,y,z)=e(x2+y2+z2)f ( x , y , z ) = e ^ { \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) }

(Multiple Choice)
4.9/5
(32)

At what points is the given function continuous? - f(x,y)=ex+yf ( x , y ) = e ^ { x + y }

(Multiple Choice)
4.8/5
(41)

Find the limit. - limP(4,4,1)ln(zx2+y2)\lim _ { P \rightarrow ( 4,4,1 ) } \ln \left( z \sqrt { x ^ { 2 } + y ^ { 2 } } \right)

(Multiple Choice)
4.8/5
(41)

Find two paths of approach from which one can conclude that the function has no limit as (x, y) approaches (0, 0). - f(x,y)=x2yx4+y2f ( x , y ) = \frac { x ^ { 2 } y } { x ^ { 4 } + y ^ { 2 } }

(Essay)
4.7/5
(38)

Find the derivative of the function at P0 in the direction of u. - f(x,y)=ln(x+9y),P0(9,9),u=6i+8jf ( x , y ) = \ln ( x + 9 y ) , \quad P _ { 0 } ( 9 , - 9 ) , \quad u = 6 i + 8 j

(Multiple Choice)
4.9/5
(46)

Find the absolute maximum and minimum values of the function on the given curve. -Function: f(x,y)=x+y;f ( x , y ) = x + y ; curve: x2+y2=49,y0x ^ { 2 } + y ^ { 2 } = 49 , y \geq 0 . (Use the parametric equations x=7cost,y=7sintx = 7 \cos t , y = 7 \sin t .)

(Multiple Choice)
4.8/5
(33)

Give an appropriate answer. -Given the function f(x,y)f ( x , y ) and the positive number ε\varepsilon as in the formal definition of a limit, find a positive number δ\delta as in the definition that insures f(x,y)f(0,0)<ε| f ( x , y ) - f ( 0,0 ) | < \varepsilon . f(x,y)=x+y;ε=0.08f ( x , y ) = x + y ; \varepsilon = 0.08

(Essay)
5.0/5
(41)

Solve the problem. -Find the point on the line of intersection of the planes x + y + z = 1 and 3x + 2y + z = 6 that is closest to the origin.

(Multiple Choice)
4.9/5
(34)

Determine whether the given function satisfies a Laplace equation. -f(x, y) = cos(x) sin(-y)

(True/False)
4.7/5
(34)

Sketch a typical level surface for the function. - f(x,y,z)=ln(x24+y24+z28)f ( x , y , z ) = \ln \left( \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 4 } + \frac { z ^ { 2 } } { 8 } \right)

(Multiple Choice)
4.8/5
(36)

Use implicit differentiation to find the specified derivative at the given point. -Find dydx\frac { d y } { d x } at the point (1,1)( - 1,1 ) for 3x3y+2x2y2=03 x - \frac { 3 } { y } + 2 x ^ { 2 } y ^ { 2 } = 0 .

(Multiple Choice)
4.8/5
(39)

Use implicit differentiation to find the specified derivative at the given point. -Find dydx\frac { d y } { d x } at the point (1,1)( 1,1 ) for 3x2+5y3+2xy=03 x ^ { 2 } + 5 y ^ { 3 } + 2 x y = 0 .

(Multiple Choice)
4.8/5
(42)

Find the linearization of the function at the given point. -f(x, y) = -9x + 3y + 6 at (-2, 4)

(Multiple Choice)
4.7/5
(35)

Find the derivative of the function at P0 in the direction of u. - f(x,y)=3x210y,P0(8,),u=3i4jf ( x , y ) = - 3 x ^ { 2 } - 10 y , \quad P _ { 0 } ( - 8 , \quad ) , \quad \mathbf { u } = 3 \mathbf { i } - 4 \mathbf { j }

(Multiple Choice)
4.9/5
(32)

Solve the problem. -Find the extreme values of f(x,y,z)=x+2yf ( x , y , z ) = x + 2 y subject to x+y+z=1x + y + z = 1 and y2+z2=4y ^ { 2 } + z ^ { 2 } = 4 .

(Multiple Choice)
5.0/5
(37)
Showing 141 - 160 of 409
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)