Exam 15: Partial Derivatives

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find all the local maxima, local minima, and saddle points of the function. - f(x,y)=x2+14x+y24y+3f ( x , y ) = x ^ { 2 } + 14 x + y ^ { 2 } - 4 y + 3

(Multiple Choice)
4.9/5
(35)

Solve the problem. -  Find the maximum value of f(x,y,z,w)=x+y+z+w subject to x2+y2+z2+w2=1\text { Find the maximum value of } f ( x , y , z , w ) = x + y + z + w \text { subject to } x ^ { 2 } + y ^ { 2 } + z ^ { 2 } + w ^ { 2 } = 1 \text {. }

(Multiple Choice)
4.8/5
(33)

Solve the problem. -Find the derivative of the function f(x,y)=exyf ( x , y ) = e ^ { x y } at the point (0,2)( 0,2 ) in the direction in which the function increases most rapidly.

(Multiple Choice)
4.9/5
(26)

Find the absolute maxima and minima of the function on the given domain. - f(x,y)=4x2+7y2 on the disk bounded by the circle x2+y2=9f ( x , y ) = 4 x ^ { 2 } + 7 y ^ { 2 } \text { on the disk bounded by the circle } x ^ { 2 } + y ^ { 2 } = 9

(Multiple Choice)
4.8/5
(31)

Find the absolute maxima and minima of the function on the given domain. - f(x,y)=x2+y2 on the diamond-shaped region x+y4f ( x , y ) = x ^ { 2 } + y ^ { 2 } \text { on the diamond-shaped region } | x | + | y | \leq 4

(Multiple Choice)
4.8/5
(48)

 Find fx,fy, and fZ\text { Find } \mathrm { f } _ { \mathbf { x } } , \mathrm { f } _ { \mathbf { y } } \text {, and } \mathrm { f } _ { \mathbf { Z } } - f(x,y,z)=ln(xy)zf ( x , y , z ) = \ln ( x y ) ^ { z }

(Multiple Choice)
4.9/5
(44)

Find the requested partial derivative. - zy\frac { \partial z } { \partial y } at (x,y,z)=(1,1,1)( x , y , z ) = ( 1,1,1 ) if z3=z+xy1z ^ { 3 } = z + x y - 1 and y3=x+y1y ^ { 3 } = x + y - 1

(Multiple Choice)
4.8/5
(36)

Give an appropriate answer. - f(x,y)=1x2+y2f ( x , y ) = \frac { 1 } { \sqrt { x ^ { 2 } + y ^ { 2 } } }

(Multiple Choice)
5.0/5
(38)

Solve the problem. -The resistance R\mathrm { R } produced by wiring resistors of R1,R2\mathrm { R } _ { 1 } , \mathrm { R } _ { 2 } , and R3\mathrm { R } _ { 3 } ohms in parallel can be calculated from the formula 1R=1R1+1R2+1R3.\frac { 1 } { R } = \frac { 1 } { R _ { 1 } } + \frac { 1 } { R _ { 2 } } + \frac { 1 } { R _ { 3 } } . If R1,R2\mathrm { R } _ { 1 } , \mathrm { R } _ { 2 } , and R3\mathrm { R } _ { 3 } are measured to be 7 ohms, 5ohms5 \mathrm { ohms } , and 6 ohms respectively, and if these measurements are accurate to within 0.050.05 ohms, estimate the maximum possible error in computing RR .

(Multiple Choice)
4.8/5
(46)

Provide an appropriate response. -Find the extrema of f(x, y, z) = x + yz on the line defined by x = 8(6 + t), y = t - 8, and z = t + 6. Classify each extremum as a minimum or maximum. (Hint: w = f(x, y, z) is a differentiable function of t.)

(Multiple Choice)
4.9/5
(35)

Find the domain and range and describe the level curves for the function f(x,y). -f(x, y) = ln (5x + 4y)

(Multiple Choice)
4.9/5
(35)

Find the limit. - limP(2,0,2)e2sin1(zx)\lim _ { \mathrm { P } \rightarrow ( 2,0 , - 2 ) } \mathrm { e } ^ { 2 } \sin ^ { - 1 } \left( - \frac { \mathrm { z } } { \mathrm { x } } \right)

(Multiple Choice)
4.9/5
(37)

Find the requested partial derivative. - (w/z)x( \partial \mathrm { w } / \partial \mathrm { z } ) _ { \mathrm { x } } at (x,y,z,w)=(1,2,9,302)( \mathrm { x } , \mathrm { y } , \mathrm { z } , \mathrm { w } ) = ( 1,2,9,302 ) if w=x2+y2+z2+12xyz\mathrm { w } = \mathrm { x } ^ { 2 } + \mathrm { y } ^ { 2 } + \mathrm { z } ^ { 2 } + 12 \mathrm { xyz } and z=x3+y3\mathrm { z } = \mathrm { x } ^ { 3 } + \mathrm { y } ^ { 3 }

(Multiple Choice)
4.8/5
(37)

Use implicit differentiation to find the specified derivative at the given point. -Find zy\frac { \partial z } { \partial y } at the point (8,1,1)( 8,1 , - 1 ) for ln(yzx)exy+z2=0\ln \left( \frac { y z } { x } \right) - e ^ { x y + z ^ { 2 } } = 0 .

(Multiple Choice)
4.9/5
(36)

Use implicit differentiation to find the specified derivative at the given point. -Find dydx\frac { d y } { d x } at the point (1,1)( 1 , - 1 ) for 5xy2+6x2y4x=0- 5 x y ^ { 2 } + 6 x ^ { 2 } y - 4 x = 0 .

(Multiple Choice)
4.9/5
(37)

Find the linearization of the function at the given point. - f(x,y)=e4x+2y at (0,0)f ( x , y ) = e ^ { 4 x + 2 y } \text { at } ( 0,0 )

(Multiple Choice)
4.9/5
(34)

 Find fx,fy, and fZ\text { Find } \mathrm { f } _ { \mathbf { x } } , \mathrm { f } _ { \mathbf { y } } \text {, and } \mathrm { f } _ { \mathbf { Z } } - f(x,y,z)=xzx+yf ( x , y , z ) = x z \sqrt { x + y }

(Multiple Choice)
4.7/5
(37)

Find the requested partial derivative. - (w/z)x,y at (x,y,z,w)=(1,2,9,266) if w=x2+y2+z2+10xyz( \partial w / \partial z ) _ { x , y } \text { at } ( x , y , z , w ) = ( 1,2,9,266 ) \text { if } w = x ^ { 2 } + y ^ { 2 } + z ^ { 2 } + 10 x y z

(Multiple Choice)
4.8/5
(39)

Find the domain and range and describe the level curves for the function f(x,y). - f(x,y)=ex+yf ( x , y ) = e ^ { x + y }

(Multiple Choice)
4.8/5
(27)

Give an appropriate answer. -Given the function f(x,y,z)f ( x , y , z ) and the positive number ε\varepsilon as in the formal definition of a limit, find a positive number δ\delta as in the definition that insures f(x,y,z)f(0,0,0)<ε| f ( x , y , z ) - f ( 0,0,0 ) | < \varepsilon . f(x,y,z)=x+yz;ε=0.09\mathrm { f } ( \mathrm { x } , \mathrm { y } , \mathrm { z } ) = \mathrm { x } + \mathrm { y } - \mathrm { z } ; \varepsilon = 0.09

(Essay)
4.9/5
(30)
Showing 361 - 380 of 409
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)