Exam 15: Partial Derivatives

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Show that the function is a solution of the wave equation. -w(x, t) = sin (-10x - 10ct)

(True/False)
4.8/5
(28)

Find the linearization of the function at the given point. - f(x,y)=8x2+2y2+8 at (8,3)f ( x , y ) = 8 x ^ { 2 } + 2 y ^ { 2 } + 8 \text { at } ( - 8 , - 3 )

(Multiple Choice)
4.8/5
(40)

Answer the question. -You are hiking on a mountainside, following a trail that slopes downward for a short distance and then begins to climb again. At the bottom of this local "dip", what can be said about the relationship between the trail's Direction and the contour of the mountainside? [Hint - Think of the trail as a constrained path, g(x, y) = c, on the Mountainside's surface, altitude = f(x, y). Consider only infinitesimal displacements.]

(Multiple Choice)
4.8/5
(46)

Estimate the error in the quadratic approximation of the given function at the origin over the given region. - f(x,y)=e4xcos2y,x0.1,y0.1f ( x , y ) = e ^ { 4 x } \cos 2 y , \quad | x | \leq 0.1 , | y | \leq 0.1

(Multiple Choice)
4.9/5
(38)

Solve the problem. -If the length, width, and height of a rectangular solid are measured to be 5, 2, and 10 inches respectively and each measurement is accurate to within 0.1 inch, estimate the maximum percentage error in computing the Volume of the solid.

(Multiple Choice)
4.9/5
(33)

Find the domain and range and describe the level curves for the function f(x,y). - f(x,y)=25x2y2f ( x , y ) = \sqrt { 25 - x ^ { 2 } - y ^ { 2 } }

(Multiple Choice)
4.9/5
(37)

Solve the problem. -Find the point on the plane x + 2y - z = 12 that is nearest the origin.

(Multiple Choice)
4.7/5
(29)

Find two paths of approach from which one can conclude that the function has no limit as (x, y) approaches (0, 0). - f(x,y)=x2x4+y2f ( x , y ) = \frac { x ^ { 2 } } { x ^ { 4 } + y ^ { 2 } }

(Essay)
4.9/5
(35)

Find the extreme values of the function subject to the given constraint. - f(x,y)=y2x2,x2+y2=16f ( x , y ) = y ^ { 2 } - x ^ { 2 } , \quad x ^ { 2 } + y ^ { 2 } = 16

(Multiple Choice)
4.9/5
(36)

Find the equation for the level surface of the function through the given point. - f(x,y,z)=e(x2+y2z),(3,5,9)f ( x , y , z ) = e ^ { \left( x ^ { 2 } + y ^ { 2 } - z \right) } , ( 3,5,9 )

(Multiple Choice)
4.9/5
(36)

Solve the problem. -Find an equation for the level curve of the function f(x,y)=16x2y2\mathrm { f } ( \mathrm { x } , \mathrm { y } ) = 16 - \mathrm { x } ^ { 2 } - \mathrm { y } ^ { 2 } that passes through the point (2,5)( \sqrt { 2 } , \sqrt { 5 } ) .

(Multiple Choice)
4.8/5
(36)

Find the limit. -Find the limit. -

(Multiple Choice)
4.8/5
(39)

Find two paths of approach from which one can conclude that the function has no limit as (x, y) approaches (0, 0). - f(x,y)=x5yx5+yf ( x , y ) = \frac { x ^ { 5 } - y } { x ^ { 5 } + y }

(Essay)
4.7/5
(42)

Solve the problem. -Find an equation for the level surface of the function f(x,y,z)=zyeθdθx2tdtf ( x , y , z ) = \int _ { z } ^ { y } e ^ { \theta } d \theta - \int _ { x } ^ { \sqrt { 2 } } t d t that passes through the point (0,ln2,ln4)( 0 , \ln 2 , \ln 4 ) .

(Multiple Choice)
4.9/5
(38)

Solve the problem. -Write parametric equations for the tangent line to the curve of intersection of the surfaces x+y2+7z=9x + y ^ { 2 } + 7 z = 9 and x=1x = 1 at the point (1,1,1)( 1,1,1 ) .

(Multiple Choice)
4.9/5
(32)

Find all the local maxima, local minima, and saddle points of the function. - f(x,y)=(x29)2+(y216)2f ( x , y ) = \left( x ^ { 2 } - 9 \right) ^ { 2 } + \left( y ^ { 2 } - 16 \right) ^ { 2 }

(Multiple Choice)
4.8/5
(35)

Find all the local maxima, local minima, and saddle points of the function. - f(x,y)=(x281)2(y264)2f ( x , y ) = \left( x ^ { 2 } - 81 \right) ^ { 2 } - \left( y ^ { 2 } - 64 \right) ^ { 2 }

(Multiple Choice)
4.9/5
(42)

Provide an appropriate answer. -Suppose that w=x2+y2+20z+tw = x ^ { 2 } + y ^ { 2 } + 20 z + t and x+4z+t=8x + 4 z + t = 8 . Assuming that the independent variables are xx , yy , and zz , find wx\frac { \partial w } { \partial x } .

(Multiple Choice)
4.9/5
(38)

Provide an appropriate response. -Find F(x)F ^ { \prime } ( x ) if F(x)=x1t4+xdtF ( x ) = \int _ { x } ^ { 1 } \sqrt { t ^ { 4 } + x } d t .

(Multiple Choice)
4.7/5
(34)

 Find fx,fy, and fZ\text { Find } \mathrm { f } _ { \mathbf { x } } , \mathrm { f } _ { \mathbf { y } } \text {, and } \mathrm { f } _ { \mathbf { Z } } - f(x,y,z)=x2y+y2z+xz2f ( x , y , z ) = x ^ { 2 } y + y ^ { 2 } z + x z ^ { 2 }

(Multiple Choice)
4.7/5
(33)
Showing 161 - 180 of 409
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)