Exam 15: Partial Derivatives

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Solve the problem. -Find the derivative of the function f(x,y,z)=xy+yz+zxf ( x , y , z ) = \frac { x } { y } + \frac { y } { z } + \frac { z } { x } at the point (7,7,7)( 7 , - 7,7 ) in the direction in which the function decreases most rapidly.

(Multiple Choice)
4.9/5
(39)

Give an appropriate answer. -Given the function f(x,y)f ( x , y ) and the positive number ε\varepsilon as in the formal definition of a limit, find a positive number δ\delta as in the definition that insures f(x,y)f(0,0)<ε| \mathrm { f } ( \mathrm { x } , \mathrm { y } ) - \mathrm { f } ( 0,0 ) | < \varepsilon . f(x,y)=(1+cosx)(x+y);ε=0.08f ( x , y ) = ( 1 + \cos x ) ( x + y ) ; \varepsilon = 0.08

(Essay)
4.8/5
(38)

Find the derivative of the function at P0 in the direction of u. - f(x,y)=6x7y,P0(7,2),u=4i3jf ( x , y ) = 6 x - 7 y , \quad P _ { 0 } ( - 7 , - 2 ) , \quad u = 4 i - 3 j

(Multiple Choice)
4.9/5
(32)

Provide an appropriate response. -Find the direction in which the function is increasing most rapidly at the point P0\mathrm { P } _ { 0 } . f(x,y)=xeyln(x),P0(3,0)f ( x , y ) = x e ^ { y } - \ln ( x ) , P _ { 0 } ( - 3,0 )

(Multiple Choice)
4.8/5
(41)

Find two paths of approach from which one can conclude that the function has no limit as (x, y) approaches (0, 0). -Does knowing that cos(1y)1\left| \cos \left( \frac { 1 } { y } \right) \right| \leq 1 tell you anything about (x,y)(0,0)sin(x)cos(1y)( x , y ) \rightarrow ( 0,0 ) \sin ( x ) \cos \left( \frac { 1 } { y } \right) ? Give reasons for your answer.

(Essay)
4.8/5
(36)

Solve the problem. -Find the extreme values of f(x,y,z)=2x3y+zf ( x , y , z ) = 2 x - 3 y + z subject to x2+y2=1x ^ { 2 } + y ^ { 2 } = 1 and y2+z2=1y ^ { 2 } + z ^ { 2 } = 1 .

(Multiple Choice)
4.8/5
(40)

Sketch a typical level surface for the function. - f(x,y,z)=9e6(y2+z2)f ( x , y , z ) = 9 e ^ { 6 \left( y ^ { 2 } + z ^ { 2 } \right) }

(Multiple Choice)
4.9/5
(41)

Solve the problem. -Find the least squares line for the points (1, 1), (2, 4), (3, 9), (4, 16).

(Multiple Choice)
4.8/5
(48)

Solve the problem. -Evaluate dwdt\frac { d w } { d t } at t=6t = 6 for the function w=exyzz2;x=t,y=t,z=1tw = e ^ { x y z } z ^ { 2 } ; x = t , y = t , z = \frac { 1 } { t } .

(Multiple Choice)
4.9/5
(30)

Find the domain and range and describe the level curves for the function f(x,y). - f(x,y)=14x2+5y2f ( x , y ) = \frac { 1 } { 4 x ^ { 2 } + 5 y ^ { 2 } }

(Multiple Choice)
4.8/5
(37)

Solve the problem. -The Van der Waals equation provides an approximate model for the behavior of real gases. The equation is P(V\mathrm { P } ( \mathrm { V } , T)=RTVbaV2\mathrm { T } ) = \frac { \mathrm { RT } } { \mathrm { V } - \mathrm { b } } - \frac { \mathrm { a } } { \mathrm { V } ^ { 2 } } , where P\mathrm { P } is pressure, V\mathrm { V } is volume, T\mathrm { T } is Kelvin temperature, and a,b\mathrm { a } , \mathrm { b } , and R\mathrm { R } are constants. Find the partial derivative of the function with respect to each variable.

(Multiple Choice)
4.7/5
(35)

Give an appropriate answer. -Given the function f(x,y)\mathrm { f } ( \mathrm { x } , \mathrm { y } ) and the positive number ε\varepsilon as in the formal definition of a limit, find a positive number δ\delta as in the definition that insures f(x,y)f(0,0)<ε| f ( x , y ) - f ( 0,0 ) | < \varepsilon . f(x,y)=2x+yx2y2+1;ε=0.12f ( x , y ) = \frac { 2 x + y } { x ^ { 2 } y ^ { 2 } + 1 } ; \varepsilon = 0.12

(Essay)
4.7/5
(35)

Solve the problem. -  Find parametric equations for the normal line to the surface z=ln(7x2+4y2+1) at the point (0,0,0)\text { Find parametric equations for the normal line to the surface } z = \ln \left( 7 x ^ { 2 } + 4 y ^ { 2 } + 1 \right) \text { at the point } ( 0,0,0 ) \text {. }

(Multiple Choice)
4.9/5
(39)

Find the extreme values of the function subject to the given constraint. - f(x,y)=4x+6y,x2+y2=13f ( x , y ) = 4 x + 6 y , x ^ { 2 } + y ^ { 2 } = 13

(Multiple Choice)
4.9/5
(37)

Sketch the surface z = f(x,y). - f(x,y)=x+yf ( x , y ) = | x + y |

(Multiple Choice)
4.8/5
(34)

Use the limit definition of the partial derivative to compute the indicated partial derivative of the function at the specified point. -  Find fx at the point (9,6,6):f(x,y,z)=6x2y+3y2+6z\text { Find } \frac { \partial f } { \partial x } \text { at the point } ( 9 , - 6 , - 6 ) : f ( x , y , z ) = 6 x ^ { 2 } y + 3 y ^ { 2 } + 6 z

(Essay)
4.8/5
(39)

Match the surface show below to the graph of its level curves. -Match the surface show below to the graph of its level curves. -

(Multiple Choice)
4.8/5
(36)

Provide an appropriate answer. -Find zv\frac { \partial z } { \partial v } when u=0u = 0 and v=11π2v = \frac { 11 \pi } { 2 } if z(x,y)=sinx+cosy,x=uvz ( x , y ) = \sin x + \cos y , x = u \cdot v , and y=u+vy = u + v .

(Multiple Choice)
4.9/5
(41)

Solve the problem. -Write parametric equations for the tangent line to the curve of intersection of the surfaces x + y + z = 2 and x - y + 2z = -3 at the point (1, 2, -1).

(Multiple Choice)
4.8/5
(43)

Estimate the error in the quadratic approximation of the given function at the origin over the given region. - f(x,y)=e4xsiny,x0.1,y0.1f ( x , y ) = e ^ { 4 x } \sin y , | x | \leq 0.1 , | y | \leq 0.1

(Multiple Choice)
4.8/5
(46)
Showing 381 - 400 of 409
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)