Exam 15: Partial Derivatives

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Provide an appropriate response. -Find the direction in which the function is increasing most rapidly at the point P0\mathrm { P } _ { 0 } . f(x,y,z)=xy2+z2,P0(1,2,1)f ( x , y , z ) = x \sqrt { y ^ { 2 } + z ^ { 2 } } , P _ { 0 } ( 1,2,1 )

(Multiple Choice)
4.8/5
(33)

Find the extreme values of the function subject to the given constraint. -f(x, y) = 12x + 3y, xy = 4, x > 0, y > 0

(Multiple Choice)
4.8/5
(38)

Find the specific function value. -  Find f(0,1,1) when f(x,y,z)=3x7yz+2x\text { Find } f ( 0,1 , - 1 ) \text { when } f ( x , y , z ) = 3 ^ { x } - 7 y z + 2 x \text {. }

(Multiple Choice)
4.9/5
(37)

Sketch the surface z = f(x,y). - f(x,y)=1x2yf ( x , y ) = 1 - x - 2 y

(Multiple Choice)
4.7/5
(29)

Solve the problem. -Find an equation for the level curve of the function f(x,y)=y216\mathrm { f } ( \mathrm { x } , \mathrm { y } ) = \sqrt { \mathrm { y } ^ { 2 } - 16 } that passes through the point (0,4)( 0,4 ) .

(Multiple Choice)
5.0/5
(33)

Solve the problem. -  Evaluate ux at (x,y,z)=(4,5,1) for the function u=p2q2r;p=xy,q=y2,r=xz\text { Evaluate } \frac { \partial \mathrm { u } } { \partial \mathrm { x } } \text { at } ( \mathrm { x } , \mathrm { y } , \mathrm { z } ) = ( 4,5,1 ) \text { for the function } \mathrm { u } = \mathrm { p } ^ { 2 } - \mathrm { q } ^ { 2 } - \mathrm { r } ; \mathrm { p } = \mathrm { xy } , \mathrm { q } = \mathrm { y } ^ { 2 } , \mathrm { r } = \mathrm { xz }

(Multiple Choice)
4.7/5
(33)

Solve the problem. -Evaluate zv\frac { \partial \mathrm { z } } { \partial \mathrm { v } } at (u,v)=(2,3)( \mathrm { u } , \mathrm { v } ) = ( 2,3 ) for the function z=xy2lnx;x=eu+v,y=uv\mathrm { z } = \mathrm { xy } ^ { 2 } - \ln \mathrm { x } ; \mathrm { x } = \mathrm { e } ^ { \mathrm { u } + \mathrm { v } } , \mathrm { y } = \mathrm { uv } .

(Multiple Choice)
4.9/5
(35)

Use implicit differentiation to find the specified derivative at the given point. -Find yx\frac { \partial y } { \partial x } at the point (2,3,2)( 2,3,2 ) for 3x2+6lnxz4yz2+4ez=03 x ^ { 2 } + 6 \ln x z - 4 y z ^ { 2 } + 4 e ^ { z } = 0 .

(Multiple Choice)
4.8/5
(34)

Provide an appropriate response. -Find dwdt\frac { d w } { d t } at t=0t = 0 for the function w=sin(x)cos(y)ln(z)w = \sin ( x ) \cos ( y ) \ln ( z ) where x=9t2+6t+π2,y=t,z=e8tx = - 9 t ^ { 2 } + 6 t + \frac { \pi } { 2 } , y = t , z = e ^ { - 8 t } .

(Multiple Choice)
4.9/5
(34)

Solve the problem. -Find the point on the line x - 3y = 6 that is closest to the origin.

(Multiple Choice)
4.9/5
(44)

 Find fx,fy, and fZ\text { Find } \mathrm { f } _ { \mathbf { x } } , \mathrm { f } _ { \mathbf { y } } \text {, and } \mathrm { f } _ { \mathbf { Z } } - f(x,y,z)=xe(x2+y2+z2)f ( x , y , z ) = x e ^ { \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) }

(Multiple Choice)
4.8/5
(30)

Find two paths of approach from which one can conclude that the function has no limit as (x, y) approaches (0, 0). - f(x,y)=x3+y6x3f ( x , y ) = \frac { x ^ { 3 } + y ^ { 6 } } { x ^ { 3 } }

(Essay)
5.0/5
(44)

 Find fx,fy, and fZ\text { Find } \mathrm { f } _ { \mathbf { x } } , \mathrm { f } _ { \mathbf { y } } \text {, and } \mathrm { f } _ { \mathbf { Z } } - f(x,y,z)=e(yz+sinx)f ( x , y , z ) = e^{ ( y z + \sin x )}

(Multiple Choice)
4.7/5
(33)

Solve the problem. -Find an equation for the level curve of the function f(x,y)=n=0(xy)nf ( x , y ) = \sum _ { n = 0 } ^ { \infty } \left( \frac { x } { y } \right) ^ { n } that passes through the point (1,5)( 1,5 ) .

(Multiple Choice)
4.8/5
(30)

Solve the problem. -Evaluate dwdt\frac { \mathrm { dw } } { \mathrm { dt } } at t=52π\mathrm { t } = \frac { 5 } { 2 } \pi for the function w=xyz;x=sint,y=cost,z=t2\mathrm { w } = \frac { \mathrm { xy } } { \mathrm { z } } ; \mathrm { x } = \sin \mathrm { t } , \mathrm { y } = \cos \mathrm { t } , \mathrm { z } = \mathrm { t } ^ { 2 } .

(Multiple Choice)
5.0/5
(33)

Find the requested partial derivative. - (w/x)y,z( \partial w / \partial x ) _ { y , z } if w=x3+y3+z3+9xyzw = x ^ { 3 } + y ^ { 3 } + z ^ { 3 } + 9 x y z

(Multiple Choice)
4.8/5
(34)

Find the extreme values of the function subject to the given constraint. - f(x,y,z)=x+2y2z,x2+y2+z2=9f ( x , y , z ) = x + 2 y - 2 z , \quad x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 9

(Multiple Choice)
4.7/5
(42)

Sketch a typical level surface for the function. - f(x,y,z)=cos(x2+y2+z2)f ( x , y , z ) = \cos \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right)

(Multiple Choice)
5.0/5
(44)

Write a chain rule formula for the following derivative. - ut\frac { \partial \mathrm { u } } { \partial \mathrm { t } } for u=f(v);v=h(s,t)\mathrm { u } = \mathrm { f } ( \mathrm { v } ) ; \mathrm { v } = \mathrm { h } ( \mathrm { s } , \mathrm { t } )

(Multiple Choice)
4.8/5
(41)

Find the specific function value. -  Find f(8,5) when f(x,y)=2y29xy\text { Find } f ( - 8 , - 5 ) \text { when } f ( x , y ) = 2 y ^ { 2 } - 9 x y

(Multiple Choice)
4.8/5
(35)
Showing 101 - 120 of 409
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)